0.355M x 0.0282L= 0.01 moles of H2SO4. Remember sulphuric acid is diprotic so it will release 2 from each molecule.
<span>So moles of protons = 0.01 x 2 = 0.02 moles of H+ </span>
<span>For neutralization: moles H+ = moles OH- </span>
<span>Therefore moles of NaOH = 0.02 </span>
<span>conc = moles / volume </span>
<span>Conc NaOH = 0.02 / 0.025L = 0.8M </span>
Answer:
The answer is: 51.8 g (86% of serving size)
Explanation:
In order to solve the problem, we have to first determine the number of moles there are in 11.0 g of sucrose. Sucrose has a molecular weight of 342 g (we calculate this from the molar mass of the elements : 12 x 12 g/mol C + 22 x 1 g/mol H + 11 x 16 g/mol O). So, we divide the mass (11.0 g) into the molecular weight of sucrose:
11.0 g sucrose x 1 mol/342 g sucrose= 0.032 mol
We have 0.032 mol of sucrose in a serving of 60 g. But we need less moles (0.0278 mol):
0.032 mol ------------ 60 g serving
0.0278 mol------------ x= 0.0278 mol x 60 g serving/0.032 mol
x= 51.8 g
So, lesser than 1 serving of 60 g must be eaten to consume 0.0278 mol os sucrose. Exactly, 51.8 g (which stands for a 86% of the serving size).
Answer:
We can seprate oil and water by the process of seprating funnel
Answer:
Pressure of hydrogen gas = 695.2 mmHg
Explanation:
Given:
Water temperature = 22°C
Pressure inside the tube = 715 mmHg
Find:
Pressure of hydrogen gas
Computation:
Using vapor pressure of water table
Water pressure at 22°C = 19.8 mmHg
Pressure inside the tube = Pressure of hydrogen gas + Water pressure at 22°C
715 = Pressure of hydrogen gas + 19.8
Pressure of hydrogen gas = 715 - 19.8
Pressure of hydrogen gas = 695.2 mmHg
Answer:
Carbon=5, hydrogen=12, oxygen=16
Explanation:
Carbon=5, hydrogen=12, oxygen=16
In order to effectively count the number of atoms, we look at the equation closely and take note of the stoichiometric coefficients of each reactant as this influences the number of atoms of that element present.
For instance, oxygen is diatomic and has a stoichiometric coefficient of 8. This implies the there are sixteen atoms of oxygen altogether.
Note that the left hand side refers to the reactants side.