Answer: The height (position) of the ball and the acceleration due gravity
Explanation:
In this case we are taking about gravitational potential energy, which is the energy a body or object possesses, due to its position in a gravitational field. In this sense, this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the Earth, in which the gravitational field is considered constant, the gravitational potential energy
will be:
Where:
is the mass of the ball
is the acceleration due gravity (assuming the ball is on the Earth surface)
is the height (position) of the ball respect to a given point
Note the value of the gravitational potential energy is directly proportional to the height.
We need the power law for the change in potential energy (due to the Coulomb force) in bringing a charge q from infinity to distance r from charge Q. We are only interested in the ratio U₁/U₂, so I'm not going to bother with constants (like the permittivity of space).
<span>The potential energy of charge q is proportional to </span>
<span>∫[s=r to ∞] qQs⁻²ds = -qQs⁻¹|[s=r to ∞] = qQr⁻¹, </span>
<span>so if r₂ = 3r₁ and q₂ = q₁/4, then </span>
<span>U₁/U₂ = q₁Qr₂/(r₁q₂Q) = (q₁/q₂)(r₂/r₁) </span>
<span>= 4•3 = 12.</span>
Answer:
Explanation:
In first case we are interested in one time 6 in six rolls
Thus probability = number of chances required/Total chances
= 1/6
Similarly in the second case probability = 2/12 = 1/6
In the same way in last case probability = 100/600 = 1/6
The probability is the same . Thus all the cases has equal chances
The half-life equation
in which <em>n </em>is equal to the number of half-lives that have passed can be altered to solve for <em>n.</em>
<em>
</em>
<em>
</em>
Then, the number of half-lives that passed can be multiplied by the length of a half-life to find the total time.
<em>2 * 5700 = </em>11400 yr
Answer:

Explanation: Angular velocity is the number of revolutions made per unit time.
We convert the number of revolutions to radians and the time given in seconds to minutes,
Given;

Also,
60s = 1 min
hence

We now divide the number of revolution in radians by the time in minutes.
