answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
2 years ago
4

Carlos gets tired of pushing and instead begins to pull with force Fpull at an angle to the horizontal.

Physics
1 answer:
Pepsi [2]2 years ago
8 0

Answer:

The wrong items are;

1) The normal for FN equals the weight Fmg

2) The force of friction, Ff, equals the applied force Fpull

The corrected statements are;

1) The normal force is weight less the vertical component of the applied force Fpull

FN = Fmg - Fpull × sin(θ)

2) The force of friction equals the horizontal component of the applied force Fpull

Ff = Fpull × cos(θ)

Explanation:

The given statement was;

The velocity of the block is constant, so the net force exerted on the block must be zero. Thus, the normal force FN equals the weight Fmg, and the force of friction Ff equals the applied force Fpull

By the equilibrium of forces actin on the system, given that the applied force acts at an angle, θ, with the horizontal, we have;

The normal force is equal to the weight less the vertical component of the applied force;

That is we have, FN = Fmg - Fpull × sin(θ)

The friction force similarly, is equal to the horizontal component of the applied force;

Ff = Fpull × cos(θ)

The wrong items are therefore as follows;

1) The normal for FN equals the weight Fmg

1 i) The normal force is weight less the vertical component of the applied force Fpull

FN = Fmg - Fpull × sin(θ)

2) The force of friction, Ff, equals the applied force Fpull

2 i) The force of friction equals the horizontal component of the applied force Fpull

Ff = Fpull × cos(θ).

You might be interested in
If you drive through water, your brakes may become slippery and ineffective. To dry the brakes off, __________.
GenaCL600 [577]

Answer:

I am not a driver, but I think it's C.

Explanation:

6 0
2 years ago
Read 2 more answers
A particle of mass m= 2.5 kg has velocity of v = 2 i m/s, when it is at the origin (0,0). Determine the z- component of the angu
melomori [17]

Answer:

please read the answer below

Explanation:

The angular momentum is given by

|\vec{L}|=|\vec{r}\ X \ \vec{p}|=m(rvsin\theta)

By taking into account the angles between the vectors r and v in each case we obtain:

a)

v=(2,0)

r=(0,1)

angle = 90°

L=(2.5kg)(1)(2\frac{m}{s})sin90\°=5.0kg\frac{m}{s}

b)

r=(0,-1)

angle = 90°

L=(2.5kg)(1)(2\frac{m}{s})sin90\°=5.0kg\frac{m}{s}

c)

r=(1,0)

angle = 0°

r and v are parallel

L = 0kgm/s

d)

r=(-1,0)

angle = 180°

r and v are parallel

L = 0kgm/s

e)

r=(1,1)

angle = 45°

L = (2.5kg)(2\frac{m}{s})(\sqrt{2})sin45\°=5kg\frac{m}{s}

f)

r=(-1,1)

angle = 45°

the same as e):

L = 5kgm/s

g)

r=(-1,-1)

angle = 135°

L=(2.5kg)(2\frac{m}{s})(\sqrt{2})sin135\°=5kg\frac{m}{s}

h)

r=(1,-1)

angle = 135°

the same as g):

L = 5kgm/s

hope this helps!!

4 0
2 years ago
A circular loop of wire with a radius of 12.0 cm and oriented in the horizontal xy-plane is located in a region of uniform magne
Ulleksa [173]

(a) 34 V

The average emf induced in the loop is given by Faraday-Newmann-Lenz law:

\epsilon = -\frac{\Delta \Phi_B}{\Delta t} (1)

where

\Delta \Phi_B is the variation of magnetic flux through the coil

\Delta t = 2.0 ms = 0.002 s is the time interval

We need to find the magnetic flux before and after. The magnetic flux is given by:

\Phi_B = BA

where

B is the magnetic field intensity

A is the area of the coil

The radius of the coil is r = 12.0 cm = 0.12 m, so its area is

A=\pi r^2 = \pi (0.12 m)^2 = 0.045 m^2

At the beginning, the magnetic field is

B_i = 1.5 T

so the flux is

\Phi_i = B_i A = (1.5 T)(0.045 m^2)=0.068 Wb

while after the removal of the coil, the magnetic field is zero, so the flux is also zero:

\Phi_f = 0

so the variation of magnetic flux is

\Delta \Phi = 0-0.068 Wb=-0.068 Wb

And substituting into (1) we find the average emf in the coil

\epsilon=-\frac{-0.068 Wb}{0.002 s}=34 V

(b) Counterclockwise

In order to understand the direction of the induced current, we have to keep in mind the negative sign in Lenz's law (1), which tells that the direction of the induced current must be such that the magnetic field produced by this current opposes the variation of magnetic flux in the coil.

In this situation, the magnetic flux through the coil is decreasing, since the coil is removed from the field. So, the induced current must be such that it produces a magnetic field whose direction is the same as the direction of the external magnetic field, which is upward along the positive z-direction.

Looking down from above and using the right-hand rule on the loop (thumb: direction of the current, other fingers wrapped: direction of magnetic field), we see that in order to produce at the center of the coil a magnetic field which is along positive z-direction, the induced current must be counterclockwise.

4 0
2 years ago
Which statements describe how chemical formulas, such as H2O, represent compounds? Check all that apply.
Pani-rosa [81]

The statements that apply in this case are:

They show the elements that make up a compound.

They show the types of atoms that make up a molecule.

They show the number of each type of atom in a molecule.

5 0
2 years ago
Read 2 more answers
An green hoop with mass mh = 2.8 kg and radius rh = 0.13 m hangs from a string that goes over a blue solid disk pulley with mass
Otrada [13]
The only force on the system is the mass of the hoop F net = 2.8kg*9.81m/s^2 = 27.468 N The mass equal of the rolling sphere is found by: the sphere rotates around the contact point with the table. 
So by applying the theorem of parallel axes, the moment of inertia of the sphere is computed by:I = 2/5*mR^2 for rotation about the center of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. 
I = 7/5*mR^2 M = 7/5*m 
Therefore, linear acceleration is computed by:F/m = 27.468 / (2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2 
7 0
2 years ago
Other questions:
  • A pendulum of 50 cm long consists of small ball of 2kg starts swinging down from height of 45cm at rest. the ball swings down an
    5·1 answer
  • Hydraulic press is called an instrument for multiplication of force. Why?
    10·1 answer
  • What is the effect of the following change on the volume of 1 mol of an ideal gas? The initial pressure is 722 torr, the final p
    13·1 answer
  • You are working as an assistant to an air-traffic controller at the local airport, from which small airplanes take off and land.
    14·1 answer
  • Calculate the magnitude of the gravitational force exerted by Mars on a 80 kg human standing on the surface of Mars. (The mass o
    15·1 answer
  • You need to determine the density of an unknown liquid and decide to perform an experiment. You notice that a wooden block float
    9·1 answer
  • Consider three starships that pass by an observer on Earth. Starship A is traveling at speed v=c/3v=c/3 relative to Earth and ha
    13·1 answer
  • The natural tendency is for entropy to___ over time.
    6·2 answers
  • Is the statement "An object always moves in the direction of the net force acting on it" true or false
    10·1 answer
  • A substance occupies one half of an open container. The atoms of the substance are closely packed but are still able to slide pa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!