Answer:

Explanation:
Hello,
In this case, since calcium hydroxide a strong base, its dissociation will completely result in both calcium and hydroxyl ions:

Thus, the concentration of hydroxyl ions equals that of the calcium hydroxide, with which we could compute the pOH as shown below:
![pOH=-log([OH^-]}=-log(0.0012)\\\\pOH=2.92](https://tex.z-dn.net/?f=pOH%3D-log%28%5BOH%5E-%5D%7D%3D-log%280.0012%29%5C%5C%5C%5CpOH%3D2.92)
Now, the pH and the pOH are related by:

Hence, the pH finally results:

Best regards.
Na₂S(aq) + Cd(NO₃)₂(aq) = CdS(s) + 2NaNO₃(aq)
v=25.00 mL
c=0.0100 mmol/mL
M(Na₂S)=78.046 mg/mmol
n(Na₂S)=n{Cd(NO₃)₂}=cv
m(Na₂S)=M(Na₂S)n(Na₂S)=M(Na₂S)cv
m(Na₂S)=78.046*0.0100*25.00≈19.5 mg
The chemical reaction would be written as
2 AsF3<span> + 3 CCl4 = 2 AsCl3 + 3 CCl2F2
</span>
We use the given amounts of the reactants to first find the limiting reactant. Then use the amount of the limiting reactant to proceed to further calculations.
150 g AsF3 ( 1 mol / 131.92 g) = 1.14 mol AsF3
180 g CCl4 (1 mol / 153.82 g) = 1.17 mol CCl4
Therefore, the limiting reactant would be CCl4 since it would be consumed completely. The theoretical yield would be:
1.17 mol CCl4 ( 3 mol CCl2F2 / 3 mol CCl4 ) = 1.17 mol CCl2F2
Answer:
k = 23045 N/m
Explanation:
To find the spring constant, you take into account the maximum elastic potential energy that the spring can support. The kinetic energy of the car must be, at least, equal to elastic potential energy of the spring when it is compressed to its limit. Then, you have:
(1)
M: mass of the car = 1050 kg
k: spring constant = ?
v: velocity of the car = 8 km/h
x: maximum compression of the spring = 1.5 cm = 0.015m
You solve the equation (1) for k. But first you convert the velocity v to m/s:


The spring constant is 23045 N/m
Answer:
Acetylene: -1,256 kJ/mol
Ethanol: -1,277 kJ/mol
The combustion of 0.25 mol of an unknown organic compound results in the release of 320 kJ of energy. Which of the compounds in the table could be the unknown compound?- Answer: Ethanol