I would say that Candace's answer is d. wide-ranging. she didn't get the exact / precise (they mean the same thing) answer.
Water can't cool at a single temperature. It must start at a higher temperature, and drop to a lower temperature in order to cool. Unless we know the other temperature, there is no way to calculate the amount of thermal energy released.
In buffer solution there is an equilibrium between the acid HA and its conjugate base A⁻: HA(aq) ⇌ H⁺(aq) + A⁻(aq).
When acid (H⁺ ions) is added to the buffer solution, the equilibrium is shifted to the left, because conjugate base (A⁻) reacts with hydrogen cations from added acid, according to Le Chatelier's principle: H⁺(aq) + A⁻(aq) ⇄ HA(aq). So, the conjugate base (A⁻) consumes some hydrogen cations and pH is not decreasing (less H⁺ ions, higher pH of solution).
A buffer can be defined as a substance that prevents the pH of a solution from changing by either releasing or absorbing H⁺ in a solution.
Buffer is a solution that can resist pH change upon the addition of an acidic or basic components and it is able to neutralize small amounts of added acid or base, pH of the solution is relatively stable
The number of Ml of a 0.40 %w/v solution of ,nalorphine that must be injected to obtain a dose of 1.5 mg is calculated as below
since M/v% is mass of solute in grams per 100 ml
convert Mg to g
1 g = 1000 mg what about 1.5 mg =? grams
= 1.5 /1000 = 0.0015 grams
volume is therefore = 100 ( mass/ M/v%)
= 100 x( 0.0015/ 0.4) = 0.375 ML