Answer:
Net electric field, 
Explanation:
Given that,
Charge 1, 
Charge 2, 
distance, d = 3.2 cm = 0.032 m
Electric field due to charge 1 is given by :



Electric field due to charge 2 is given by :



The point charges have opposite charge. So, the net electric field is given by the sum of electric field due to both charges as :



So, the electric field strength at the midpoint between the two charges is 91406.24 N/C. Hence, this is the required solution.
An imbalance between electrical charges
The photon can be absorbed and the energy of the photon is exactly equal to the energy-level difference between the ground state and the level d.
Answer:
the correct answer is A, the object goes 4 times as far
Explanation:
This is a projectile launching approach. Where the parameter we are controlling is the initial speed and they ask us how far it goes from the initial one. Let's calculate the range with a speed (vo)
R1 = v₀² sin 2θ / g
Now let's double vo, the new speed is
v = 2 v₀
We calculate the scope
R2 = (2v₀)² sin 2θ / g
R2 = 4 v₀² sin 2θ / g
R2 = 4 R1
Therefore the correct answer is A, the object goes 4 times further
Kinetic energy<span> is the </span>energy<span> of motion. An object that has motion - whether it is vertical or horizontal motion - has </span>kinetic energy<span>. It is expressed as:
KE = mv^2 /2
720 = 10.0v^2 /2
v = 12 m/s
Hope this answers the question. Have a nice day.</span>