answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
1 year ago
12

How much power does a machine have that does 15204 J of work in 40 seconds?

Physics
1 answer:
pentagon [3]1 year ago
5 0

Explanation:

since P=W/t

P=15204/40

P=380.1 Watt

You might be interested in
Un tubo de acero de 40000 kilómetros forma un anillo que se ajusta bien a la circunferencia de la tierra. Imagine que las person
Darina [25.2K]

Answer:

82.76m

Explanation:

In order to find the distance of the steel ring to the ground, when its temperature has raised by 1°C, you first calculate the radius of the steel tube before its temperature increases.

You use the formula for the circumference of the steel ring:

C=2\pi r    (1)

C: circumference of the ring = 40000 km = 4*10^7m (you assume the circumference is the length of the steel tube)

you solve for r in the equation (1):

r=\frac{C}{2\pi}=\frac{4*10^7m}{2\pi}=6,366,197.724m

Next, you use the following formula to calculate the change in the length of the tube, when its temperature increases by 1°C:

L=Lo[1+\alpha \Delta T]         (2)

L: final length of the tube = ?

Lo: initial length of the tube = 4*10^7m

ΔT = change in the temperature of the steel tube = 1°C

α: thermal coefficient expansion of steel = 13*10^-6 /°C

You replace the values of the parameters in the equation (2):

L=(4*10^7m)(1+(13*10^{-6}/ \°C)(1\°C))=40,000,520m

With the new length of the tube, you can calculate the radius of a ring formed with the tube. You again solve the equation (1) for r:

r'=\frac{C}{2\pi}=\frac{40,000,520m}{2\pi}=6,366,280.484m

Finally, you compare both r and r' radius:

r' - r = 6,366,280.484m - 6,366,197.724m = 82.76m

Hence, the distance to the ring from the ground is 82.76m

4 0
2 years ago
A student uses an electronic force sensor to study how much force the student’s finger can apply to a specific location. The stu
melisa1 [442]

Answer:

B. Trial 2

Explanation:

Trial 2, because the student’s finger applied the largest force to the sensor.

Because the trial 2 student finger applied to largest force.

7 0
2 years ago
Read 2 more answers
The thrust of a certain boat’s engine generates a power of 10kW as the boat moves at constant speed 10ms through the water of a
Lunna [17]

Answer:

The change in power is 4400 W.

Explanation:

Given that,

Power = 10 kW

Speed = 10 m/s

Increases speed = 12 m/s

Given equation is,

F=kv

We know that,

The power is,

P=Fv

Put the value of F into the formula

P=(kv)v

P=kv^2

P\propto v^2

We need to calculate the new power

Using formula for power

\dfrac{P}{P'}=\dfrac{v^2}{v'^2}

Put the value into the formula

\dfrac{10}{P'}=(\dfrac{10}{12})^2

P'=(\dfrac{12}{10})^2\times10

P'=14.4\ kW

We need to calculate the change in power

Using formula of change in power

\Delta P=P'-P

Put the value into the formula

\Delta P=14.4-10

\Delta P=4.4\ kW

\Delta P=4.4\times1000

\Delta P=4400\ W

Hence, The change in power is 4400 W.

6 0
3 years ago
Astronomers were at first surprised to find complicated molecules in the interstellar medium. They thought ultra-violet light fr
jeka57 [31]

Answer:

The dust present in the clouds.

Explanation:

The complicated composition molecules that can be found in space are generally associated with clouds of dust. The significant amount of dust in these clouds provides protection not only for these molecules, but for any body that makes up or is associated with dust clouds.

It is exactly this dust that protects the molecules against the action of ultraviolet rays.

8 0
2 years ago
How much heat is released when 432 g of water cools down from 71'c to 18'c?
maria [59]
The heat released by the water when it cools down by a temperature difference \Delta T is
Q=mC_s \Delta T
where
m=432 g is the mass of the water
C_s = 4.18 J/g^{\circ}C is the specific heat capacity of water
\Delta T =71^{\circ}C-18^{\circ}C=53^{\circ} is the decrease of temperature of the water

Plugging the numbers into the equation, we find
Q=(432 g)(4.18 J/g^{\circ}C)(53^{\circ}C)=9.57 \cdot 10^4 J
and this is the amount of heat released by the water.
7 0
2 years ago
Other questions:
  • What is the mass of an object that creates 33,750 joules of energy by traveling at 30 m/sec?
    10·2 answers
  • A particular material has an index of refraction of 1.25. What percent of the speed of light in a vacuum is the speed of light i
    15·2 answers
  • For years, space travel was believed to be impossible because there was nothing there Rockets could push off in space in order t
    8·1 answer
  • Jules is conducting an experiment involving friction. He is measuring the temperature of various objects and surfaces after quic
    14·1 answer
  • Sally finds herself stranded on a frozen pond so slippery that she can't stand up or walk on it. To save herself, she throws one
    9·2 answers
  • (a) Calculate the absolute pressure at the bottom of a fresh- water lake at a depth of 27.5 m. Assume the density of the water i
    8·2 answers
  • If you wanted to find the area of the hot filament in a light bulb, you would have to know the temperature (determinable from th
    5·1 answer
  • evaluate the numerical value of the vertical velocity of the car at time t=0.25 s using the expression from part d, where y0=0.7
    10·1 answer
  • At a drag race, a jet car travels 1/4 mile in 5.2 seconds. What is the final speed of the
    15·1 answer
  • The different in size of each of the rope's pullers, correspond to a difference in the magnitude of the applied force, such that
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!