answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maksim231197 [3]
2 years ago
12

When a drag strip vehicle reaches a velocity of 60 m/s, it begins a negative acceleration by releasing a drag chute and applying

its brakes. While reducing its velocity back to zero, its acceleration along a straight line path is a constant -7.5 m/s2 . What displacement does it undergo during this deceleration period
Physics
1 answer:
hammer [34]2 years ago
5 0

Answer:

240 meters

Explanation:

The distance traveled by the vehicle can be calculated using the following equation:

v_{f}^{2} = v_{0}^{2} + 2ax   (1)

Where:

x: is the displacement

v_{f}: is the final speed = 0 (reduces its velocity back to zero)                    

v_{0}: is the initial speed = 60 m/s

a: is the acceleration = -7.5 m/s²

By solving equation (1) for x we have:

x = \frac{v_{f}^{2} - v_{0}^{2}}{2a} = \frac{0 - (60 m/s)^{2}}{2*(-7.5 m/s^{2})} = 240 m

Therefore, the vehicle undergoes 240 meters of displacement during the deceleration period.

           

I hope it helps you!

You might be interested in
A closed, rigid container holding 0.2 moles of a monatomic ideal gas is placed over a Bunsen burner and heated slowly, starting
Georgia [21]

Answer:

a) 2250 J

b) 0 J

c) 2250 J

Explanation:

a) Since, the process is isochoric

the change in internal energy

\Delta U = n C_v(T_f-T_i)

Here, n = 0.2 moles

Cv = 12.5 J/mole.K

We have to find T_f so we can use gas equation as

\frac{P_1V_1}{P_2V_2} =\frac{T_i}{T_f}\\Since, V_1=V_2    [isochoric/process]\\\Rightarrow \frac{P_{atm}}{4P_{atm}} = \frac{300}{T_f} \\\Rightarrow T_f = 1200 K

So,  \Delta U= 0.2\times12.5(1200-300)\\=2250 J

b) Since, the process is isochoric no work shall be done.

c) By first law of thermodynamics we have

\Delta U = Q-W\\Since, W = 0\\\Delta U = Q\\Therefore, Q = 2250 J

Since, Q is positive 2250 J of heat will flow into the system.

6 0
2 years ago
A 1.0 104 kg spacecraft is traveling through space with a speed of 1200 m/s relative to Earth. A thruster fires for 2.0 min, exe
aniked [119]
We are given information:
m=1.0* 10^{4} kg \\ v=1200m/s \\ t=2min=120s \\ F = 25kN = 25000N

If we apply Newton's second law we can calculate acceleration:
F = m * a
a = F / m
a = 25000 / 10000
a = 2.5 m/s^2

Now we can use this information to calculate change of speed.
a = v / t
v = a * t
v = 2.5 * 120
v = 300 m/s

Force is being applied in direction that is opposite to a direction in which space craft is moving. This means that final speed will be reduced.
v = 1200 - 300
v = 900 m/s

Formula for momentum is:
p = m * v
Initial momentum:
p = 10000 * 1200
p = 12 000 000
p = 12 *10^6 kg*m/s
Final momentum:
p = 10000 * 900
p = 9 000 000
p = 9 *10^6 kg*m/s

7 0
2 years ago
What results when energy is transformed while juggling three bowling pins?
Nady [450]

Answer:

his is an example of the transformation of gravitational potential energy into kinetic energy

Explanation:

The game of juggling bowling is a clear example of the conservation of mechanical energy,

when the bolus is in the upper part of the path mechanical energy is potential energy; As this energy descends, it becomes kinetic energy where the lowest part of the trajectory, just before touching the hand, is totally kinetic.

At the moment of touching the hand, a relationship is applied that reverses the value of the speed, that is, now it is ascending and the cycle repeats.

Therefore this is an example of the transformation of gravitational potential energy into kinetic energy

8 0
1 year ago
A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 13.0 cm , giving it a ch
Leokris [45]

a) Electric field inside the paint layer: zero

b) Electric field just outside the paint layer: -3.62\cdot 10^7 N/C

c) Electric field 8.00 cm outside the paint layer: -7.27\cdot 10^7 N/C

Explanation:

a)

We can find the electric field inside the paint layer by applying Gauss Law: the total flux of the electric field through a gaussian surface is equal to the charge contained within the surface divided by the vacuum permittivity, mathematically:

\int EdS = \frac{q}{\epsilon_0}

where

E is the electric field

dS is the element of surface

q is the charge within the gaussian surface

\epsilon_0 = 8.85\cdot 10^{-12}F/m is the vacuum permittivity

Here we want to find the electric field just inside the paint layer, so we take a sphere of radius r as Gaussian surface, where

R = 6.5 cm = 0.065 m is the radius of the plastic sphere (half the diameter)

By taking the sphere of radius r, we note that the net charge inside this sphere is zero, therefore

q=0

So we have

\int E dS=0

which means that the electric field inside the paint layer is zero.

b)

Now we want to find the electric field just outside the paint layer: therefore, we take a Gaussian sphere of radius

r=R=0.065 m

The area of the surface is

A=4\pi R^2

And since the electric field is perpendicular to the surface at any point, Gauss Law becomes

E\cdot 4\pi R^2 = \frac{q}{\epsilon_0}

The charge included within the sphere in this case is the charge on the paint layer, therefore

q=-17.0\mu C=-17.0\cdot 10^{-6}C

So, the electric field is:

E=\frac{q}{4\pi \epsilon_0 R^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.065)^2}=-3.62\cdot 10^7 N/C

where the negative sign means the direction of the field is inward, since the charge is negative.

c)

Here we want to calculate the electric field 8.00 cm outside the surface of the paint layer.

Therefore, we have to take a Gaussian sphere of radius:

r=8.00 cm + R = 8.00 + 6.50 = 14.5 cm = 0.145 m

Gauss theorem this time becomes

E\cdot 4\pi r^2 = \frac{q}{\epsilon_0}

And the charge included within the sphere is again the charge on the paint layer,

q=-17.0\mu C=-17.0\cdot 10^{-6}C

Therefore, the electric field is

E=\frac{q}{4\pi \epsilon_0 r^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.145)^2}=-7.27\cdot 10^7 N/C

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

5 0
2 years ago
Use what you have learned in the reading to answer the following question. The point of a compass needle points to Earth’s north
DIA [1.3K]
I would say unlimited polarity because the compass’s needle is always attracted to Earth’s north pole.

Good luck to you!
6 0
1 year ago
Other questions:
  • Henry can lift a 200 N load 20 m up a ladder in 40 s. Ricardo can lift twice the load up one-half the distance in the same amoun
    14·2 answers
  • A piece of candy has 5 calories (or 5000 calories). if it could be burned, leaving nothing but carbon dioxide and water, how muc
    8·2 answers
  • The amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. what percentage of the mechanical energy of th
    13·1 answer
  • Angelina jumps off a stool. As she is falling, the Earth’s gravitational force on her is larger in magnitude than the gravitatio
    15·2 answers
  • A carnot cycle engine operates between a low temperature reservoir at 20°c and a high temperature reservoir at 800°c. if the eng
    15·1 answer
  • A cart with mass m1 = 3.2 kg and initial velocity of v1,i = 2.1 m/s collides with another cart of mass M2 = 4.3 kg which is init
    7·1 answer
  • A11) A solenoid of length 18 cm consists of closely spaced coils of wire wrapped tightly around a wooden core. The magnetic fiel
    5·1 answer
  • A 32-kg child decides to make a raft out of empty 1.0-L soda bottles and duct tape. Neglecting the mass of the duct tape and pla
    15·1 answer
  • Before leaving the house in the morning, you plop some stew in your slow cooker and turn it on Low. The slow cooker has a 160 Oh
    8·1 answer
  • Which season is signaled by average lower temperature and indirect, angled sunlight?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!