Answer:
<em>765,000 Joule</em>
Explanation:
<u>Principle of Conservation of Energy
</u>
The total energy in an isolated system cannot be created or destroyed, but transformed. Moving objects have kinetic energy, objects placed in some height above a reference level have gravitational potential energy. When they change their motion variables, one energy converts into the other, but if the numbers don't fit, we know there was some other type of energy acting into the system. The most common reason for energy 'losses' is the thermal energy, produced when objects move in rough surfaces or take friction from the air.
The 7,500 kg truck is originally traveling at 20 m/s to a certain height we'll set to 0. Thus, its total energy is



When it comes to a stop, its speed is 0 and its height is 10 m higher than before. It means all the kinetic energy was transformed into other types of energy. The gravitational potential energy is

Since this number is not equal to the previous value of the energy, the difference is due to thermal energy dissipated by friction

Answer:
a. 30 N / m
b. 9.0 N
Explanation:
Given that
Unstretched length of the spring,
= 20.0cm = 0.2m
a) When the mass of 4.5N is hanging from the second spring, then extended length Is
= 35.0cm = 0.35m
So, the change in spring length when mass hangs is

= (0.35 - 0.20) m
= 0.15m
As spring are identical
Let us assume that the spring constant be "k", so at equilibrium
Restoring Force on spring = Block weightage
kx = W = 4.50

= 30 N / m
b) Now for the third spring, stretched the length of spring is
= 50cm = 0.5m
So, the change in spring length is

= (0.5-0.20)m
= 0.30m
At equilibrium,
Restoring Force on spring = Block weightage
Now using all mentioned and computed values in above,

= 30(0.3)
= 9.0 N
Answer:

Explanation:
<u>Free Fall Motion</u>
A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.
The speed vf of the object when a time t has passed is given by:

Where 
Similarly, the distance y the object has traveled is calculated as follows:

If we know the height h from which the object was dropped, we can solve the above equation for t:

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

Therefore, it has traveled down a distance:

Thus, the height of the pen is:

That prediction is not correct because Xenon is extremely stable; column 18 of the periodic table contains the noble gasses, which are stable because their outer-most energy levels are completely filled. Having the octet (8) of valence electrons means that the element no longer needs to lose or gain electrons to gain stability.
The column 17 elements are unstable because they only have one valence electron short of the stable octet configuration of the noble gasses.
Answer:
acceleration = 2.4525 m/s²
Explanation:
Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²
Tension in the rope = T
Sol: m2 > m1
i) for downward motion of m2:
m2 a = m2 g - T
5 a = 5 × 9.81 m/s² - T
⇒ T = 49.05 m/s² - 5 a Eqn (a)
ii) for upward motion of m1
m a = T - m1 g
3 a = T - 3 × 9.8 m/s²
⇒ T = 3 a + 29.43 m/s² Eqn (b)
Equating Eqn (a) and(b)
49.05 m/s² - 5 a = T = 3 a + 29.43 m/s²
49.05 m/s² - 29.43 m/s² = 3 a + 5 a
19.62 m/s² = 8 a
⇒ a = 2.4525 m/s²