answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firdavs [7]
2 years ago
9

Which two options describes behaviors of particles that are related to the chemical properties of the materials

Physics
1 answer:
jarptica [38.1K]2 years ago
3 0

Answer:

The two correct answers are B.) reacting quickly with water, and D.) forming bonds with other atoms.

Explanation:

You might be interested in
Use the formula h = −16t2 + v0t. (if an answer does not exist, enter dne.) a ball is thrown straight upward at an initial speed
makkiz [27]
Using the given formula with v0=56 ft/s and h=40 ft 
h = -16t2 + v0t  
40 = -16t2 + 56t 
16t2 - 56t + 40 = 0  
Solving the quadratic equation:  
t= (-b+/-(b^2-4ac)^1/2)/2a = (56+/-((-56)^2-4*16*40)^1/2)/2*16 = (56 +/- 24) / 32 
 We have two possible solutions  
t1 = (56+24)/32 = 2.5 
t2 = (56-24)/32 = 1  
So initially the ball reach a height of 40 ft in 1 second.
3 0
2 years ago
A tank contains 100 gal of water and 50 oz of salt.water containing a salt concentration of 1 4 (1 1 2 sin t) oz/gal flows into
Alchen [17]

Answer:

Explanation:

Heres the possible full question and solution:

A tank contains 100 gal of water and 50 oz of salt. Water containing a salt concentration of ¼ (1 + ½ sin t) oz/gal flows ito the tank at a rate of 2 gal/min, and the mixture in the tank flows out at the same rate.

a. Find the amount of salt in the tank at any time.

b. Plot the solution for a time period long enough so that you see the ultimate behavior of the graph.

c. The long-time behavior of the solution is an oscillation about a certain constant level. What is this level? What is the amplitude of the oscillation?

solution

a)

Consider the tank contains 100gal of water and 50 oz of salt

Assume that the amount of salt in the tank at time t is Q(t).

Then, the rate of change of salt in the tank is given by \frac{dQ}{dt}.

Here, \frac{dQ}{dt}=rate of liquid flowing in the tank - rate of liquid flowing out.

Therefore,

Rate_{in} =2gal/min \times \frac{1}{4} (1+ \frac{1}{2}sin t)oz/gal\\\\\\ \frac{1}{2} (1+ \frac{1}{2}sin t)oz/min\\\\\\Rate_{out}=2gal/min \times\frac{Q}{100}oz/gal\\\\\frac{Q}{50}oz/min

Therefore,

\frac{dQ}{dt} can be evaluated as shown below:

\frac{dQ}{dt}=\frac{1}{2}(1+\frac{1}{2}\sin t)-\frac{Q}{50}\\\\\\\frac{dQ}{dt}+\frac{1}{50}Q=\frac{1}{2}+\frac{1}{4}\sin t

The above differential equation is in standard form:

\frac{dy}{dt}+Py=G

Here, P=\frac{1}{50},G=\frac{1}{2}+\frac{1}{4}\sin t

The integrating factor is as follows:

\mu(t)=e^{\int {P}dt}\\\mu(t)=e^{\int {\frac{1}{50}}dt}\\\mu(t)=e^{\frac{t}{50}}

Thus, the integrating factor is  \mu(t)=e^{\frac{t}{50}}

Therefore, the general solution is as follows:

y\mu(t)=\int {\mu (t)G}dt\\\\Qe^{\frac{t}{50}}=\int {e^{\frac{t}{50}}(\frac{1}{2}+\frac{1}{4}\sin t) dt}\\\\Qe^{\frac{t}{50}}=\frac{1}{2}\int {e^{\frac{t}{50}}dt + \frac{1}{4}\int {\sin t {e^{\frac{t}{50}}} dt}\\\\\Qe^{\frac{t}{50}}=25 {e^{\frac{t}{50}} + \frac{1}{4}\int {\sin t {e^{\frac{t}{50}}} dt}+C...(1)

Here, C is arbitrary constant of integration.

Solve \int {\sin te^{\frac{t}{50}}} dt}

Here u = e^{\frac{t}{50}} and v =\sin t.

Substitute u , v in the below formula:

\int{u,v}dt=u\int{v}dt-\int\frac{du}{dt}\int{v}dt\dot dt\\\\\int {e^{\frac{t}{50}}\sin t}dt=-e^{\frac{t}{50}}\cos t + \frac{1}{50}\int{e^{\frac{t}{50}}\cos t}dt...(2)

Now, take u = e^{\frac{t}{50}}, v =\sin t

Therefore, \int{e^{\frac{t}{50}}\cos t} dt=\int {e^{\frac{t}{50}}\sin t}dt - \frac{1}{50}\int{e^{\frac{t}{50}}\sin t}dt...(3)

Use (3) in equation(2)

\int {e^{\frac{t}{50}}\sin t}dt=-e^{\frac{t}{50}}\cos t + \frac{e^{\frac{t}{50}}}{50}\sin t - \frac{1}{2500}\int{e^{\frac{t}{50}}\sin t}dt\\\\\frac{2501}{2500}\int{e^{\frac{t}{50}}\sin t}dt={e^{\frac{t}{50}}\cos t}+\frac{e^{\frac{t}{50}}}{50}\sin t\\\\\int{e^{\frac{t}{50}}\sin t}dt=\frac{2500}{2501}{e^{\frac{t}{50}}\cos t}+\frac{50}{2501}e^{\frac{t}{50}}\sin t...(4)

Use (4) in equation(l) .

Qe^{\frac{t}{50}}=25 e^{\frac{t}{50}} - \frac{625}{2501}e^{\frac{t}{50}}\cos t +\frac{25}{5002}e^{\frac{t}{50}}\sin t+C

Apply the initial conditions t =0, Q = 50.

50=25-\frac{625}{2501}+c\\\\c=\frac{63150}{2501}

So, Qe^{\frac{t}{50}}=25 e^{\frac{t}{50}} - \frac{625}{2501}e^{\frac{t}{50}}\cos t +\frac{25}{5002}e^{\frac{t}{50}}\sin t+\frac{63150}{2501}

Therefore, the amount of salt in the tank at any time is as follows:

Qe^{\frac{t}{50}}=25 e^{\frac{t}{50}} - \frac{625}{2501}e^{\frac{t}{50}}\cos t +\frac{25}{5002}e^{\frac{t}{50}}\sin t+\frac{63150}{2501}e^{\frac{-t}{50}}

b)

sketch the solution curve as shown in attachment as graph 1:

CHECK COMMENT FOR C

3 0
2 years ago
The position of a particle moving along the x-axis varies with time according to x(t) = 5.0t^2 − 4.0t^3 m. Find (a) the velocity
KengaRu [80]
<h2>Answer:</h2>

(a) v(t) = [10.0t - 12.0t²] m/s  and a(t) = [10.0 - 24.0t ] m/s² respectively

(b) -28.0m/s and -38.0m/s² respectively

(c) 0.83s

(d) 0.83s

(e) x(t)  = 1.1573 m           [where t = 0.83s]

<h2>Explanation:</h2>

The position equation is given by;

x(t) = 5.0t² - 4.0t³ m           --------------------(i)

(a) Since velocity is the time rate of change of position, the velocity, v(t), of the particle as a function of time is calculated by finding the derivative of equation (i) as follows;

v(t) = dx(t) / dt = \frac{dx}{dt} = \frac{d}{dt} [ 5.0t² - 4.0t³ ]

v(t) = 10.0t - 12.0t²     --------------------------------(ii)

Therefore, the velocity as a function of time is v(t) = 10.0t - 12.0t² m/s

Also, since acceleration is the time rate of change of velocity, the acceleration, a(t), of the particle as a function of time is calculated by finding the derivative of equation (ii) as follows;

a(t) = dx(t) / dt = \frac{dv}{dt} =  \frac{d}{dt} [ 10.0t - 12.0t² ]

a(t) = 10.0 - 24.0t             --------------------------------(iii)

Therefore, the acceleration as a function of time is a(t) = 10.0 - 24.0t m/s²

(b) To calculate the velocity at time t = 2.0s, substitute the value of t = 2.0 into equation (ii) as follows;

=> v(t) =  10.0t - 12.0t²

=> v(2.0) = 10.0(2) - 12.0(2)²

=> v(2.0) = 20.0 - 48.0

=> v(2.0) = -28.0m/s

Also, to calculate the acceleration at time t = 2.0s, substitute the value of t = 2.0 into equation (iii) as follows;

=> a(t) = 10.0 - 24.0t

=> a(2.0) = 10.0 - 24.0(2)

=> a(2.0) = 10.0 - 48.0

=> a(2.0) = -38.0 m/s²

Therefore, the velocity and acceleration at t = 2.0s are respectively -28.0m/s and -38.0m/s²

(c) The time at which the position is maximum is the time at which there is no change in position or the change in position is zero. i.e dx / dt = 0. It also means the time at which the velocity is zero. (since velocity is dx / dt)

Therefore, substitute v = 0 into equation (ii) and solve for t as follows;

=> v(t) = 10.0t - 12.0t²

=> 0 = 10.0t - 12.0t²

=> 0 = ( 10.0 - 12.0t ) t

=> t = 0            or             10.0 - 12.0t = 0

=> t = 0            or             10.0 = 12.0t

=> t = 0            or             t = 10.0 / 12.0

=> t = 0            or             t = 0.83s

At t=0 or t = 0.83s, the position of the particle will be maximum.

To get the more correct answer, substitute t = 0 and t = 0.83 into equation (i) as follows;

<em>Substitute t = 0 into equation (i)</em>

x(t) = 5.0(0)² - 4.0(0)³ = 0

At t = 0; x = 0

<em>Substitute t = 0.83s into equation (i)</em>

x(t) = 5.0(0.83)² - 4.0(0.83)³

x(t) = 5.0(0.6889) - 4.0(0.5718)

x(t) = 3.4445 - 2.2872

x(t)  = 1.1573 m

At t = 0.83; x = 1.1573 m

Therefore, since the value of x at t = 0.83s is 1.1573m is greater than the value of x at t = 0 which is 0m, then the time at which the position is at maximum is 0.83s

(d) The velocity will be zero when the position is maximum. That means that, it will take the same time calculated in (c) above for the velocity to be zero. i.e t = 0.83s

(e) The maximum position function is found when t = 0.83s as shown in (c) above;

Substitute t = 0.83s into equation (i)

x(t) = 5.0(0.83)² - 4.0(0.83)³

x(t) = 5.0(0.6889) - 4.0(0.5718)

x(t) = 3.4445 - 2.2872

x(t)  = 1.1573 m            [where t = 0.83s]

8 0
2 years ago
A steel cylinder at sea level contains air at a high pressure. Attached to the tank are two gauges, one that reads absolute pres
marishachu [46]

Answer:

C) The pressure reading stays the same.

Explanation:

3 0
2 years ago
Read 2 more answers
If it takes an airplane 15 minutes to go from 30 mph to 330 mph, what is its acceleration?
zzz [600]
Using the a=vf-vi divided by tf-ti:
A is acceleration
Vf is final velocity- 330
Vi is intial velocity-30
Tf is final time-15
Ti is initial time-0
A = 330-30 divided by 15-0
A = 300 divided by 15
A= 20 m/s^2 
Hope this helps
3 0
2 years ago
Other questions:
  • Locate the element calcium (Ca) on the periodic table and click on the square. Read about the properties of calcium. Why might c
    12·2 answers
  • What geologic features might form at the surface of plate A?
    8·1 answer
  • Suppose you sketch a model of an atom using the ones here as a guide. How would you build a model that is ionized? How would you
    15·1 answer
  • A toxin that inhibits the production of gtp would interfere with the function of a signal transduction pathway that is initiated
    5·1 answer
  • A plastic cube with a coin taped to its top surface is floating partially submerged in water. A student marks the level of the w
    8·1 answer
  • A wave on a string is described by
    10·1 answer
  • A small glass bead charged to 5.0 nCnC is in the plane that bisects a thin, uniformly charged, 10-cmcm-long glass rod and is 4.0
    10·1 answer
  • A box of mass M is pushed a distance Δ x across a level floor by a constant applied force F . The coefficient of kinetic frictio
    12·1 answer
  • Three identical resistors are connected in series to a battery. If the current of 12 A flows from the battery, how much current
    9·1 answer
  • A train runs from New Delhi to Hyderabad it covers first of 420 km in 7 hours and the next distance of 360 km in 6 hours​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!