Answer:
Velocity of Afrom B=21m/s
Acceleration of A from B=1.68m/s°2
Explanation:
Given
Radius r=150m
Velocity of a Va= 54km/hr
Va=54*1000/3600=15m/s
Velocity of b Vb=82km/hr
VB=81*1000/3600=22.5mls
The velocity of Car A as observed from B is VBA
VB= VA+VBA
Resolving the vector into X and Y components
For X component= 15cos60=7.5m/s
Y component=22 5sin60=19.48m/s
VBA= √(X^2+Y^2)
VBA= ✓(7.5^2+19.48^2)=21m/s
For acceleration of A observed from B
A=VA^2/r= 15^2/150=1.5m/s
Resolving into Xcomponent=1.5cos60=0.75m/s
Y component=3cos60=1.5
Acceleration BA=√(0.75^2+1.5^2)
1.68m/s
If she has a choice and the wiring details are stated on the packaging,
then Janelle should look for lights that are wired in parallel within the
string, and she should avoid lights that are wired in series within the string.
If a single light in a parallel string fails, then only that one goes out.
The rest of the lights in the string continue to shimmer and glimmer.
If a single light in a series string fails, then ALL of the lights in that string
go out, and it's a substantial engineering challenge to determine which light
actually failed.
Answer:
<em>The glider's new speed is 68.90 m/s</em>
Explanation:
<u>Principle Of Conservation Of Mechanical Energy</u>
The mechanical energy of a system is the sum of its kinetic and potential energy. When the only potential energy considered in the system is related to the height of an object, then it's called the gravitational potential energy. The kinetic energy of an object of mass m and speed v is

The gravitational potential energy when it's at a height h from the zero reference is

The total mechanical energy is


The principle of conservation of mechanical energy states the total energy is constant while no external force is applied to the system. One example of a non-conservative system happens when friction is considered since part of the energy is lost in its thermal manifestation.
The initial conditions of the problem state that our glider is glides at 416 meters with a speed of 45.2 m/s. The initial mechanical energy is

Operating in terms of m


Then we know the glider dives to 278 meters and we need to know their final speed, let's call it
. The final mechanical energy is

Operating and factoring

Both mechanical energies must be the same, so

Simplifying by m and rearranging

Computing

The glider's new speed is 68.90 m/s
Two methods of transfer of heat are involved in this process: conduction and convection.
In fact, the metal spoon is heated by conduction because the molecules of the boiling water collide with the molecules of the spoon, releasing heat to it; and also by convection, because in the pot of boiling water masses of hot water goes upward and they give their heat to the spoon, then these masses become cooler and they go down, replaced by other masses of hot water.
Answer:
The activation energy for this reaction, Ea = 159.98 kJ/mol
Explanation:
Using the Arrhenius equation as:

Where, Ea is the activation energy.
R is the gas constant having value 8.314 J/K.mol
K₂ and K₁ are the rate constants
T₂ and T₁ are the temperature values in kelvin.
Given:
K₂ = 8.66×10⁻⁷ s⁻¹ , T₂ = 425 K
K₁ = 3.61×10⁻¹⁵ s⁻¹ , T₁ = 298 K
Applying in the equation as:

Solving for Ea as:
Ea = 159982.23 J /mol
1 J/mol = 10⁻³ kJ/mol
Ea = 159.98 kJ/mol