Answer:
Explanation:
The rate at which heat will be radiated is given by the expression
E = e Aσ ( T⁴ - T₀⁴ )
E is heat radiated , e is emissivity , A is area of surface , σ is stephan's constant T is temperature of the object and T₀ is temperature of the surrounding .
For all the objects given , e , σ T and T₀ are same so E will solely dependent on area of the surface
surface area of cube= 6 r² ,
surface area of sphere = 4 π r²
= 12.56 r²
hemisphere = 2 π r²
= 6.28 r²
12.56 r² >6.28 r² > 6 r²
heat radiated by sphere > heat radiated by hemisphere > heat radiated by cube .
We can first calculate the net force using the given information.
By Newton's second law, F(net) = ma:
F(net) = 25 * 4.3 = 107.5
We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):
f = F(net) - F(app) = 150 - 107.5 = 42.5 N
Now we can calculate the coefficient of friction, u, using the normal force, F(N):
f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17
Answer:
45 meters
Explanation:
20 min = 15 meters
So if 20 x 3 = 60
you have to do 3 x 15 !
- which equals to 45 <3
<u>- mark me brainlest pls . </u>
<span>Most objects tend to contain the same numbers of positive and negative charge because this is the most stable situation. In fact, if an object has an excess of positive charge, it tends to attract an equal number of negative charges to balance this effect and restore neutrality: the attracted negative charges combine with the excess of positive charges, leaving the object electrically neutral.</span>
Answer:
the answer to this question is
<em>The</em><em> </em><em>Same</em><em> </em>
<em>newton's</em><em> </em><em>law</em><em> </em><em>#3</em>
Explanation:
<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em>