answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
2 years ago
14

The volume of a piece of rock was 18.0 cm^3. The student measured the mass of the piece of rock as 48.6 g. Calculate the density

of the rock in g/cm^3.
Physics
1 answer:
Tatiana [17]2 years ago
3 0

Answer:

Density of rock piece = 2.7 g/cm³

Explanation:

Given:

Volume of rock piece = 18 cm³

Mass of rock piece = 48.6 gram

Find:

Density of rock piece

Computation:

We know relation between density, mass and volume,

Density = Mass / Volume

Density of rock piece = Mass of rock / Volume of rock

Density of rock piece = 48.6 / 18

Density of rock piece = 2.7 g/cm³

You might be interested in
The minute hand of a wall clock measures 16 cm from its tip to the axis about which it rotates. The magnitude and angle of the d
olya-2409 [2.1K]

Answer:

Explanation:

Given

Minute hand length =16 cm

Time at a quarter after the hour to half past i.e. 1 hr 45 min

Angle covered by minute hand in 1 hr is 360 and in 45 minutes 270

|r|=\frac{3\times 2\pi r}{4}=75.408 cm

Angle =270^{\circ}

(c)For the next half hour

Effectively it has covered 2 revolution and a quarter

|r|=\frac{2\pi r}{4}=25.136 cm

angle turned =90^{\circ}

(f)Hour after that

After an hour it again comes back to its original position thus displacement is same =25.136

Angle turned will also be same i.e. 90 ^{\circ}

7 0
2 years ago
A helicopter, starting from rest, accelerates straight up from the roof of a hospital. The lifting force does work in raising th
kobusy [5.1K]

Answer:

24,267.6 watts

Explanation:

from the question we are given the following:

mass (m) = 810 kg

final velocity (v) = 7 m/s

initial velocity (u) = 0 m/s

time (t) = 3.5 s

final height (h₁) = 8.2 m

initial height (h₀) = 0 m

acceleration due to gravity (g) = 9.8 m/s^{2}

find the power

power = \frac{work done}[time}

and

work done = change in kinetic energy (K.E) + change in potential energy (P.E)

work done = (0.5 mv^{2} - 0.5 mu^{2} ) + ( mgh₁ - mgh₀)

since u and h₀ are zero the work done now becomes

work done = (0.5 mv^{2}) + ( mgh₁ )                    

work done = (0.5 x 810 x 7^{2}) + ( 810 x 9.8 x 8.2)

work done = 84, 936.6 joules

recall that power = \frac{work done}[time}

power = \frac{84,936.6}[3.5}

power = 24,267.6 watts

7 0
2 years ago
Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
KIM [24]

Answer:

The velocity is v = 4.76 \ m/s

Explanation:

From the question we are told that

   The first distance is   d_1  =  4.0 \ km  =  4000 \ m

   The  first speed  is  v_1 =  5.0 \ m/s

    The  second distance is  d_2  =  1.0 \ km  =  1000 \ m

    The  second speed  is  v_2  =  4.0 \ m/s

Generally the time taken for first distance is  

      t_1 =  \frac{d_1 }{v_1 }

        t_1 =  \frac{4000}{5}

       t_1 =  800 \ s

The time taken for second  distance is

           t_1 =  \frac{d_2 }{v_2 }

        t_1 =  \frac{1000}{4}

       t_1 =  250 \ s

The total time is mathematically represented as

     t =  t_1 + t_2

=>   t =  800 + 250

=>    t =  1050 \ s

Generally the constant velocity that would let her finish at the same time is mathematically represented as

      v =  \frac{d_1 + d_2}{t }

=>    v =  \frac{4000 + 1000}{1050 }

=>    v = 4.76 \ m/s

7 0
2 years ago
What voltage is required to move 6A through 20?<br><br>​
Marina CMI [18]

Answer:

120V

Explanation:

Given parameters:

Current  = 6A

Resistance  = 20Ω

Unknown:

Voltage = ?

Solution:

According to ohms law;

           V = IR

Where V is the voltage

            I is the current

            R is the resistance

Now, insert the parameters and solve;

    V  = 6 x 20  = 120V

7 0
2 years ago
If Earth were twice as far from the sun, the force of gravity attracting the Earth to the Sun would be
zalisa [80]
If Earth was twice as far from the sun, the force of gravity attracting the Earth to the sun would be only one-quarter as strong. The correct answer will be C. 
6 0
2 years ago
Read 2 more answers
Other questions:
  • As an object moves along the x axis, many measurements are made of its position, enough to generate a smooth, accurate graph of
    12·2 answers
  • if a volcano spews a 500-kg rock vertically upward a distance of 500m. what was its velocity when it left the volcano? if the vo
    9·1 answer
  • Find the angle (above the horizontal) at which a projectile achieves its maximum range, if y=y0.
    11·1 answer
  • Traffic officials indicate, it takes longer to ______ when you drive fast.
    12·2 answers
  • You are moving at a speed 2/3 c toward randy when randy shines a light toward you. at what speed do you see the light approachin
    12·1 answer
  • In the following equations, the distance x is in meters, the time tin seconds. and the velocity v is in meters per second. whata
    15·2 answers
  • A paper clip is made of wire 0.5 mm in diameter. If the original material from which the wire is made is a rod 25 mm in diameter
    9·1 answer
  • roblem 10: In an adiabatic process oxygen gas in a container is compressed along a path that can be described by the following p
    9·1 answer
  • Three point charges are positioned on the x axis. If the charges and corresponding positions are +32 µC at x = 0, +20 µC at x =
    11·1 answer
  • The two particles are both moving to the right. Particle 1 catches up with particle 2 and collides with it. The particles stick
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!