answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikolay [14]
2 years ago
4

what weight of water would exert a pressure of 2000 Pascal on a base of a rectangular water tank with dimension 50 m by 20 m. wh

at weight of water would exert a pressure of 2000 pascal's on a base of a rectangular water tank with dimension 50 m by 20 m ​
Physics
1 answer:
tatyana61 [14]2 years ago
4 0

Answer:

Pressure depends on the height of the water not on the area of the tank.

P (ressure) = density * g * h

h = 2000 nt / m^2 / (1000 kg / m^3 * 9.8 m / s^2) = .204 m

W = M V g = M h A * g

If you want the weight of the water on the entire base (A = 1000 m^2)

W = 1000 kg / m^3 * .204 m * 1000 m^2 = 2.04E5 * 9.8 m / s^2

W = 2E6  

But pressure = Force / area

Force = 2000 * 1000 = 2E6

Not sure what they are asking here

You might be interested in
A can of sardines is made to move along an x axis from x = 0.47 m to x = 1.20 m by a force with a magnitude given by F = exp(–8x
sattari [20]
If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .

I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect. On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on. The main question we're left with after all of this is: Why sardines ? ?
6 0
2 years ago
A quarterback throws a football with an initial velocity v at an angle θ above horizontal. Assume the ball leaves the quarterbac
Maru [420]
(a) The y-component or vertical velocity is calculated using:
Vy = Vsin(∅)

(b) The x-component or horizontal velocity is calculated using:
Vx = Vcos(∅)
6 0
2 years ago
Two insulated copper wires of similar overall diameter have very different interiors. One wire possesses a solid core of copper,
balandron [24]

Answer with Explanation:

We are given that

Radius of  solid core wire=r=2.28 mm=2.28\times 10^{-3} m

1mm=10^{-3} m

Radius of each strand  of thin wire=r'=0.456 mm=0.456\times 10^{-3} m

Current density of each wire=J=3750 A/m^2

a.Area =\pi r^2

Where \pi=3.14

Using the formula

Cross section area of copper wire has solid core =3.14\times (2.28\times 10^{-3})^2=16.3\times 10^{-6} m^2

Current density =J=\frac{I}{A}

Using the formula

3750=\frac{I}{16.3\times 10^{-6}}

I=3750\times 16.3\times 10^{-6}=0.061 A

Total number of strands=19

Area of strand wire=A'=19\times 3.14\times (0.456\times 10^{-3})^2=12.4\times 10^{-6} m^2

J'=\frac{I'}{A'}

3750=\frac{I'}{19\times 3.14(0.456\times 10^{-3})^2}

I'=3750\times 19\times 3.14(0.456\times 10^{-3})^2

I'=0.047 A

b.Resistivity of copper wire=\rho=1.69\times 10^{-8}\Omega-m

Length of each wire =6.25 m

Resistance, R=\frac{\rho l}{A}

Using the formula

Resistance of solid core wire=R=\frac{1.69\times 10^{-8}\times 6.25}{16.3\times 10^{-6}}=6.5\times 10^{-3}\Omega

Resistance of strand wire=R'=\frac{1.69\times 10^{-8}\times 6.25}{12.4\times 10^{-6}}=8.5\times 10^{-3}\Omega

7 0
2 years ago
How are chargeable cells different from ordinary dry cells​
topjm [15]
Ordinary cells can convert chemical energy to electrical energy only, but rechargeable cells can also store electrical energy into chemical energy and vice versa. You will study more about it in your higher classes. secondary cells can be recharged and used again but dry cells cannot be recharged.
6 0
2 years ago
The image shows one complete cycle of a mass on a spring in simple harmonic motion. An illustration of a mass on a vertical spri
Alja [10]

Answer:

D. "The net force is zero, so the acceleration is zero"

Explanation:

edge 2020

6 0
2 years ago
Other questions:
  • In the circuit shown in the figure, four identical resistors labeled a to d are connected to a battery as shown. s1 and s2 are s
    14·1 answer
  • Which type of listening response includes the use of head nods, facial expressions, and short utterances such as "uh-huh" that s
    8·1 answer
  • Which of the following would increase the strength of an electromagnet ?
    5·2 answers
  • A box of books with mass 58 kg rests on the level floor of the campus bookstore. The floor is freshly waxed and has negligible f
    6·1 answer
  • How much force is required to pull a spring 3.0 cm from
    7·1 answer
  • How does giving this award help the BLM more
    15·2 answers
  • A rod 16.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electri
    9·1 answer
  • Ellen does an experiment by releasing a ball from a height of 1 m above each floor in a tall building. She records the time it t
    8·2 answers
  • What is the mass and density of 237 mL of water
    10·1 answer
  • Suggest one reason why the bricklayer needs a higher energy diet than the computer operator
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!