Answer:
12 N/cm²
Explanation:
From the question given above, the following data were obtained:
Weight (W) of block = 240 N
Area (A) = 20 cm²
Pressure (P) =?
Next, we shall determine the force exerted by the block. This can be obtained as follow:
Weight (W) of block = 240 N
Force (F) =.?
Weight and force has the same unit of measurement. Thus, we force applied is equivalent to the weight of the block. Thus,
Force (F) = Weight (W) of block = 240 N
Force (F) = 240 N
Finally, we shall determine the pressure on the floor as follow:
Force (F) = 240 N
Area (A) = 20 cm²
Pressure (P) =?
P = F/A
P = 240 / 20
P = 12 N/cm²
Therefore, the pressure on the floor is 12 N/cm².
Answer:
Plasma
Explanation:
For a fusion reaction to take place, there must be conditions in which the particles have extreme thermal kinetic energies, in this way the collisions that cause the nuclear fusion are generated. Therefore, it is necessary to reach very high temperatures, in which the state of matter will necessarily be plasma.
20.3 divided by 3.0 will get u velocity and v times 3.0s
Answer:
27 °C
Explanation:
BY the statement of the question it is clear that it is about an ideal gas - and hence if change in KE is about zero - then there will be no change of temperature.
So, answer is 27 °C
Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V
Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:
h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.
In order to calculate the cutoff wavelength we have to consider that Ek=0
in this case h*ν=W
(h*c)/λ=4.52 eV
λ= (h*c)/4.52 eV
λ= (1240 eV*nm)/(4.52 eV)=274.34 nm
From this h*ν = Ek+W; we can calculate the kinetic energy for a radiation wavelength of 198 nm
then we have
(h*c)/(λ)-W= Ek
Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV
Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this acts to slow down the ejected electrons from the catode.