<span>The density of an iceberg is less than that of water and that is why it floats. It is the same as ice cubes floating on water too. Water is a very unique substance in that it is one of few compounds where cooling it past freezing point decreases its density (study hydrogen bonds). The possible answers are therefore A or C. If the majority of the ice is below the water then it should be clear from common sense that A is the correct answer as it would mostly float on the top with just a little under the surface if the answer were as low as C. See Archimedes Principle for an explanation of how much of the ice floats and how much is underwater.</span>
[ H₃O⁺] = 10 ^ - pH
[ H₃O⁺ ] = 10 ^ - 7.30
[ H₃O⁺ ] = 5.011 x 10⁻⁸ M
hope this helps!
Answer:
The open system evaporates the solvent in the solution
Explanation:
An open system is a system in which exchange of materials and energy can occur. If a TLC set up is left open, then the set up constitutes an open system.
During TLC, the sample is dotted on the plate and inserted into a suitable solvent. The solvent moves up the plate and achieves the required separation of the mixture.
Most of these solvents used used TLC are volatile organic compounds. Therefore, if the TLC set up is left open, the solvent will evaporate leading to poor results after running the TLC experiment.
Answer:
The description including its given problem is outlined in the following section on the clarification.
Explanation:
The given values are:
RBCC = 0.12584 nm
RFCC = 0.12894 nm
The unit cell edge length (ABCC) as well as the atomic radius (RBcc) respectively connected as measures for BCC (α-phase) structure:
√3 ABCC = 4RBCC
⇒ ABCC = 
⇒ = 
⇒ = 
Likewise AFCC as well as RFCC are interconnected by
√2AFCC = 4RFCC
⇒ AFCC = 
⇒ = 
⇒ = 
Now,
The Change in Percent Volume,
= 
= 
= 
= 
= 
Note: percent = %
94.20 g/3.16722 mL = 29.74 g/mL
The ratio of mass to volume is equal to the substance's density. Thus, 29.74 g/mL is the density of whatever substance it may be. Density does not change for incompressible matter like solid and some liquids. Although, it may be temperature dependent.