Answer:
A 93%
Explanation:
= Pressure will be equal at inlet and outlet
= Density of water = 1000 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
= Velocity at inlet = 1.2 m/s
= Velocity at outlet
= Radius of inlet = 
= Radius of outlet
From Bernoulli's relation

From continuity equation

The fraction would be

The fraction is 93.0304%
Answer:
mass of the planet: 
Explanation:
When a moon keeps a circular orbit around a planet, it is the force of gravity the one that provides the centripetal force to keep it in its circular trajectory of radius R. So if we can write that in such cases (being the mass of the planet "M" and the mass of the moon "m"), we can form an equation by making the centripetal force on the moon equal the force of gravity (using the Newton's Universal Law of Gravity):

where we used here the tangential velocity (v) of the moon around the planet. This equation can be further simplified by dividing both sides by "m" and multiplying both sides by the orbital radius R:

Notice that the mass of the moon has actually disappeared from the equation, which tells us that the orbiting velocity and period do not depend on the mass of the moon, but on the mass of the actual planet.
We know the orbital radius R (
, the value of the Universal Gravitational constant G, and we can estimate the value of the tangential velocity of the moon since we know it period: 36.3 hrs = 388800 seconds.
We know that the moon makes a full circumference (
) in 388800 seconds, therefore its tangential velocity is:

where we rounded the velocity to one decimal.
Notice that we have converted all units to the SI system, so when using the formula to solve for the mass of the planet, the answer comes directly in kg.
Now we use this value for the tangential velocity to estimate the mass of the planet in the first equation we made and simplified:

<span>14 m/s
Assuming that all of the energy stored in the spring is transferred to dart, we have 2 equations to take into consideration.
1. How much energy is stored in the spring?
2. How fast will the dart travel with that amount of energy.
As for the energy stored, that's a simple matter of multiplication. So:
20 N * 0.05 m = 1 Nm = 1 J
For the second part, the energy of a moving object is expressed as
KE = 0.5 mv^2
where
KE = Kinetic energy
m = mass
v = velocity
Since we now know the energy (in Joules) and mass of the dart, we can substitute the known values and solve for v. So
KE = 0.5 mv^2
1 J = 0.5 0.010 kg * v^2
1 kg*m^2/s^2 = 0.005 kg * v^2
200 m^2/s^2 = v^2
14.14213562 m/s = v
So the dart will have a velocity of 14 m/s after rounding to 2 significant figures.</span>
Answer:
Total Work done =0.65 joule
Explanation:
Work done is given Mathematically as
W=F *d
Where w=work done in joules
F=applied force
d= distance moved
The work done to move the toy accros the first meter is
W1=0.5*1
W1=0.5joule
The work done to move the toy across the next 2m at an angle of 30° is
.W2=0.5*2cos30
W2=0.5*2*0.154
W2=0.154joule
Hence total work done is
W1+W2=0.5+0.154
Total Work done =0.65 joule
P = mv
p = 3.5 × 5
p = 17.5 kg .m/s
Hope this helps!