The index of refraction of a material is the ratio between the speed of light in vacuum, c, and the speed of light in that material, v:

where the speed of light in vacuum is

. The speed of light in benzene is

, so we can use the previous relationship to find the refractive index of benzene:
Refer to the diagram shown below.
When an athlete is in motion, he/she exerts a vertical force (the person's weight, W) on the ground. The ground exerts an equal and opposite force, N, the normal reaction on the athlete, so that W = N.
At the same time, the ground exerts a horizontal force, F, o n the athlete so that he/she does not slip.
The magnitude of the horizontal force is
F = μN = μW
where μ = the dynamic coefficient of friction.
Answer:
The horizontal force is μW,
where
W = the weight of the athlete and,
μ = the dynamic coefficient of friction.
Answer:
During convection, hot material expands & rises then moves to the side and cools & sinks. this circular pattern is called a convection current.
Explanation:
Convection is one of the three methods of transfer of heat. It occurs only in fluids (liquids or gases).
Convection occurs when there is a source of heat that heats a fluid, such as in a boiling pot of water. The water which is on the bottom of the pot becomes warmer before than the water at the top (because it is closer to the flame), and so it becomes less dense: for this reason, it expands and it becomes rising. On the contrary, the water on top is colder, so it is more dense and starts sinking, replacing the warmer water. As the new part of water gets warmer, it starts rising, and so the process is continuously repeated. This circular current is called convection current.
VO2 max is considered to be the most valid measure<span> of </span>cardio respiratory fitness<span>. It </span>measures<span> the capacity of the heart, lungs, and blood to transport oxygen to the working muscles, and </span>measures<span> the utilization of oxygen by the muscles during exercise.</span>
Answer:
Elastic potential energy into kinetic energy
Explanation:
Initially the energy is stored inside the spring, which is compressed. This form of energy is called elastic potential energy, and its formula is

where k is the spring constant, which gives the 'strength' of the spring, while x is the compression/stretching of the spring with respect to its equilibrium position.
When the spring unwinds, it returns to its equilibrium position, so x becomes zero and the potential energy converts into another form of energy, which is related to the motion of the car (in fact, the car starts moving). This form of energy is called kinetic energy, and its formula is

where m is the mass of the car and v is its speed.