answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
In-s [12.5K]
2 years ago
11

Describe 3 ways that wind erosion moves sediment

Physics
1 answer:
Pepsi [2]2 years ago
8 0
Suspension, saltation, and surface creep are the three types of soil movement which occur during wind erosion. While soil can be blown away at virtually any height, the majority (over 93%) of soil movement takes place at or below one meter.

Suspension occurs when very fine dirt and dust particles are lifted into the wind. They can be thrown into the air through impact with other particles or by the wind itself. Once in the atmosphere, these particles can be carried very high and be transported over extremely long distances. Soil moved by suspension is the most spectacular and easiest to recognize of the three forms of movement.

Saltation - The major fraction of soil moved by the wind is through the process of saltation. In saltation, fine soil particles are lifted into the air by the wind and drift horizontally across the surface increasing in velocity as they go. Soil particles moved in this process of saltation can cause severe damage to the soil surface and vegetation. They travel approximately four times longer in distance than in height. When they strike the surface again they either rebound back into the air or knock other particles into the air.

Creep - The large particles which are too heavy to be lifted into the air are moved through a process called surface creep. In this process, the particles are rolled across the surface after coming into contact with the soil particles in saltation.

Hope this helps

Tried to be detailed ;)
You might be interested in
Janelle wants to buy some strings of decorative lights for her home. She is trying to decide between two strings of lights that
inysia [295]
If she has a choice and the wiring details are stated on the packaging,
then Janelle should look for lights that are wired in parallel within the
string, and she should avoid lights that are wired in series within the string. 

If a single light in a parallel string fails, then only that one goes out. 
The rest of the lights in the string continue to shimmer and glimmer.

If a single light in a series string fails, then ALL of the lights in that string
go out, and it's a substantial engineering challenge to determine which light
actually failed.
6 0
2 years ago
Read 2 more answers
A proposed space elevator would consist of a cable stretching from the earth's surface to a satellite, orbiting far in space, th
NISA [10]

To solve this problem we will apply the concepts related to energy conservation. Here we will use the conservation between the potential gravitational energy and the kinetic energy to determine the velocity of this escape. The gravitational potential energy can be expressed as,

PE= \frac{GMm}{d}

The kinetic energy can be written as,

KE= \frac{1}{2} mv^2

Where,

G = 6.67*10^{-11}m^3/kg\cdot s^2Gravitational Universal Constant

m = 5.972*10^{24}kg Mass of Earth

h = 56*10^6m  Height

r = 6.378*10^6m Radius of Earth

From the conservation of energy:

\frac{1}{2} mv^2 = \frac{GMm}{d}

Rearranging to find the velocity,

v = \sqrt{\frac{2Gm}{d}} \rightarrow  Escape velocity at a certain height from the earth

If the height of the satellite from the earth is h, then the total distance would be the radius of the earth and the eight,

d = r+h

v = \sqrt{\frac{2Gm}{r+h}}

Replacing the values we have that

v = \frac{2(6.67*10^{-11})(5.972*10^{24})}{6.378*10^6+56*10^6}

v = 3.6km/s

Therefore the escape velocity is 3.6km/s

3 0
2 years ago
Bill has a mass of 85 kg and is skating west. He increases his speed from 3 m/s to 5 m/s by applying a force for 3 seconds. What
likoan [24]
F = ma
F = 85×(5-3)÷3
F = 85×(2÷3)
F = 85×0.667
F = 56.67N
4 0
2 years ago
A weightlifter lifts a 13.0-kg barbel from the ground an moves it a distance of 1.3 meters. What is the work se does on the barb
marta [7]

The work done on the barbell is -165.62 Nm.

Explanation:

Work done on any object is the measure of force required to move that object from one position to another. So it is determined by the product of force acting on the object with the displacement of the object.

In the present problem, the displacement of the object on acting of force is given as 1.3 m. And the weight of the object which is a barbel is given as 13 kg. As the work is to lift the object from the ground, so the acceleration due to gravity will be acting on the object. In other words, the force applied on the object to lift it should be in opposite direction to the acting of acceleration due to gravity.

Thus, Force = - Mass * Acceleration due to gravity = - 13 * 9.8 =-127.4 N

Now, the force is -127.4 N and the displacement is 1.3 m.

So, Work done = F*d

Work done = -127.4* 1.3 = -165.62 Nm

So, the work done on the barbell is -165.62 Nm.

6 0
2 years ago
A cart moves along a track at a velocity of 3.5 cm/s. when a force is applied to the cart, its velocity increases to 8.2 cm/s. i
oksian1 [2.3K]
Acceleration, in physics, is the rate of change of velocity of an object with respect to time. <span> Anytime an object's velocity is changing, the object is said to be </span><span>accelerating. It can be calculated as follows:

acceleration = 8.2 - 3.5 / 1.5 = 3.1 m/s</span>²

Hope this answers the question.
5 0
2 years ago
Read 2 more answers
Other questions:
  • On which planet would a spaceship need the largest force to take off
    14·2 answers
  • A scientist measures the growth of a bamboo plant over time. The table below shows the results.
    5·2 answers
  • A paper clip is pushed horizontally off a table with speed 1.5m/s. If the table has a height of 1.1m how far from the table does
    14·2 answers
  • The deepest point of the pacific ocean is 11,033 m, in the mariana trench. what is the gauge pressure in the water at that point
    6·1 answer
  • Neglecting the effect of air resistance a stone dropped off a 175-m high building lands on the ground in: A)3s B)4s C)6s D)18s E
    12·1 answer
  • A 250 Hz tuning fork is struck and the intensity at the source is I1 at a distance of one meter from the source. (a) What is the
    11·1 answer
  • A gold wire that is 1.8 mm in diameter and 15 cm long carries a current of 260 mA. How many electrons per second pass a given cr
    14·1 answer
  • A 2.0 m × 4.0 m flat carpet acquires a uniformly distributed charge of −10 μC after you and your friends walk across it several
    15·1 answer
  • While practicing S-turns, a consistently smaller half-circle is made on one side of the road than on the other, and this turn is
    13·1 answer
  • In seismology, the P wave is a longitudinal wave. As a P wave travels through the Earth, the relative motion between the P wave
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!