answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
In-s [12.5K]
2 years ago
11

Describe 3 ways that wind erosion moves sediment

Physics
1 answer:
Pepsi [2]2 years ago
8 0
Suspension, saltation, and surface creep are the three types of soil movement which occur during wind erosion. While soil can be blown away at virtually any height, the majority (over 93%) of soil movement takes place at or below one meter.

Suspension occurs when very fine dirt and dust particles are lifted into the wind. They can be thrown into the air through impact with other particles or by the wind itself. Once in the atmosphere, these particles can be carried very high and be transported over extremely long distances. Soil moved by suspension is the most spectacular and easiest to recognize of the three forms of movement.

Saltation - The major fraction of soil moved by the wind is through the process of saltation. In saltation, fine soil particles are lifted into the air by the wind and drift horizontally across the surface increasing in velocity as they go. Soil particles moved in this process of saltation can cause severe damage to the soil surface and vegetation. They travel approximately four times longer in distance than in height. When they strike the surface again they either rebound back into the air or knock other particles into the air.

Creep - The large particles which are too heavy to be lifted into the air are moved through a process called surface creep. In this process, the particles are rolled across the surface after coming into contact with the soil particles in saltation.

Hope this helps

Tried to be detailed ;)
You might be interested in
Combine Newton's 2nd law and Hooke's law for a spring to find the acceleration of the block a(t) as a function of time. Express
Inga [223]

Answer:

a=-\dfrac{k}{m}x(t)

Explanation:

From Newton's second law,

F = ma

where F is the force, m is the mass and a is the acceleration.

From Hooke's law,

F = -kx(t)

where k is the spring constant and x(t) is the displacement function measured from the origin. The negative sign indicates the force acts in opposite direction to the displacement. In fact, it is a restoring force; it acts to return the spring to its original undisturbed position.

Since both forces are the same,

F = ma= - kx(t)

a=-\dfrac{k}{m}x(t)

The implication of this is that the acceleration is proportional to the displacement but opposite to it. That last statement is the definition of a simple harmonic motion which this is.

The ratio \dfrac{k}{m} is a constant except in situations where the mass is varying (say, the mass on the spring is a decaying material).

4 0
2 years ago
A swimmer does 3,560 J of work in 55 s. What is the swimmer’s power output? Round your answer to two significant figures. The po
Natasha2012 [34]
The value of the swimmer's power output is calculated by dividing the work done by the time it took for the work to be completed. From the given in this item,
                              P = 3560 J/ 55 s = 64.73 W
Rounding off to two significant figures will give us 65 W. 
6 0
2 years ago
Read 2 more answers
Grace, Erin, and Tony are on a seesaw. Grace has a mass of 45kg and is seated 0.7m to the left of the fulcrum. Nicole has a mass
salantis [7]
Use Scoratic it works with any time of subject
5 0
2 years ago
Assume that you stay on the earth's surface. what is the ratio of the sun's gravitational force on you to the earth's gravitatio
Pachacha [2.7K]
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg. 

F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²

F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N

Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m

Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356  N

Ratio = 0.356  N/589.18 N
<em>Ratio = 6.04</em>
5 0
2 years ago
Read 2 more answers
A heavy frog and a light frog jump straight up into the air. They push off in such away that they both have the same kinetic ene
Ilia_Sergeevich [38]

Answer:

The lighter frog goes higher than the heavier frog.

The lighter frog is moving faster than the heavier frog

Explanation:

If both frogs have the same kinetic energy when they leave the ground, the following equality applies:

K(light) = K(heavy) = \frac{1}{2} *ml*vol^{2} = \frac{1}{2}*mh*voh^{2}

Now, if the only force acting on the frogs is gravity, when they reach to the maximum height, we can apply the following kinematic equation:

vf^{2} -vo^{2} = 2*a*hmax = vf^{2} -vo^{2} = 2*(-g)*hmax

When h= hmax, the object comes momentarily to an stop, so vf =0

Solving for hmax:

hmax =\frac{vo^{2} }{2*g}

As the lighter frog, in order to have the same kinetic energy than the heavier one, has a greater initial velocity, it will go higher than the other.

As a consequence of both having the same kinetic energy, the lighter frog will be moving faster than the heavier frog.

5 0
2 years ago
Other questions:
  • A solid element that is malleable' a good conductor of electricity, and reacts with oxygen is classified as a
    14·1 answer
  • A horse does 860 j of work in 420 seconds while pulling a wagon. what is the power output of the horse? round your answer to the
    12·2 answers
  • A geologist is studying the shore along a river. She finds a pile of rocks at the base of a riverbank. These broken rock pieces
    14·2 answers
  • What factors affect attractive force
    14·2 answers
  • The field B = −2ax + 3ay + 4az mT is present in free space. Find the vector force exerted on a straight wire carrying 12 A in th
    6·1 answer
  • A 0.500-kg ball traveling horizontally on a frictionless surface approaches a very massive stone at 20.0 m/s perpendicular to wa
    5·1 answer
  • Quickly spinning the handle of a hand generator, Kristina is able to light three bulbs in a circuit. When she spins the generato
    11·1 answer
  • Before leaving the house in the morning, you plop some stew in your slow cooker and turn it on Low. The slow cooker has a 160 Oh
    8·1 answer
  • An astronaut hits a golf ball of mass m on the Moon, where there is no atmosphere and the acceleration due to gravity is g 6 , w
    10·1 answer
  • 010) Identify the true statement. Group of answer choices The height of waves is determined by wind strength and fetch. Wave bas
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!