Answer:
1.1 sec
Explanation:
m = mass of the box = 8 kg
k = spring constant of the spring = 69 N/m
v = initial speed of the box = 1.5 m/s
t = time period of oscillation of box in contact with the spring
Time period is given as

Inserting the values

t = 1.1 sec
<span>The Adirondack Mountains, Taconic Mountains, and the Hudson Highlands have the most resistant bedrock.</span>
<span>5.98 x 10^-2 ohms.
Resistance is defined as:
R = rl/A
where
R = resistance in ohms
r = resistivity (given as 1.59x10^-8)
l = length of wire.
A = Cross sectional area of wire.
So plugging into the formula, the known values, including the area of a circle being pi*r^2, gives:
R = 1.59x10^-8 * 3.00 / (pi * (5.04 x 10^-4)^2)
R = (4.77 x 10^-8) / (pi * 2.54016 x 10 ^-7)
R = (4.77 x 10^-8) / (7.98015 x 10^-7)
R = 5.98 x 10^-2 ohms
So that wire has a resistance of 5.98 x 10^-2 ohms.</span>
3 kilometers, it is just 5/60 or 1/12 multiplied by 36.
Answer:
from the above analysis we can say that the angular velocity in the later case is more than that of the former case. This means that the number of rotation made in the truck case is more than that made in pike position.
Explanation:
This can be explained on the basis of conservation of angular momentum.
This means the initial and the final angular velocity is conserved. Consider initial position (1)in the pike and final position in the be truck position. So there inertia's will also be different.
⇒

also,


since, 

therefore,

So, from the above analysis we can say that the angular velocity in the later case is more than that of the former case. This means that the number of rotation made in the truck case is more than that made in pike position.