Answer:
A polar molecule is a molecule in which one end of the molecule is slightly positive, while the other end is slightly negative. A diatomic molecule that consists of a polar covalent bond, such as HF, is a polar molecule. The two electrically charged regions on either end of the molecule are called poles, similar to a magnet having a north and a south pole. A molecule with two poles is called a dipole. Hydrogen fluoride is a dipole. A simplified way to depict polar molecules is pictured below When placed between oppositely charged plates, polar molecules orient themselves so that their positive ends are closer to the negative plate and their negative ends are closer to the positive plate
Experimental techniques involving electric fields can be used to determine if a certain substance is composed of polar molecules and to measure the degree of polarity.
For molecules with more than two atoms, the molecular geometry must also be taken into account when determining if the molecule is polar or nonpolar. is a comparison between carbon dioxide and water. Carbon dioxide (CO2) is a linear molecule. The oxygen atoms are more electronegative than the carbon atom, so there are two individual dipoles pointing outward from the C atom to each O atom. However, since the dipoles are of equal strength and are oriented in this way, they cancel each other out, and the overall molecular polarity of CO2 is zero.
Water is a bent molecule because of the two lone pairs on the central oxygen atom. The individual dipoles point from the H atoms toward the O atom. Because of the shape, the dipoles do not cancel each other out, and the water molecule is polar. In the figure, the net dipole is shown in blue and points upward.
Some other molecules are shown below (Figure below). Notice that a tetrahedral molecule such as CH4 is nonpolar. However, if one of the peripheral H atoms is replaced by another atom that has a different electronegativity, the molecule becomes polar. A trigonal planar molecule (BF3) may be nonpolar if all three peripheral atoms are the same, but a trigonal pyramidal molecule (NH3) is polar.
Answer:

Explanation:
Hermione is pretty smart. She realizes that, according to Dalton's Law of Partial Pressures, each gas exerts its pressure independently of the others, as if the others weren't even there.
She shows Ron how to use the Ideal Gas Law to solve the problem.
pV = nRT
She collects the data:
V = 1.00 L; n = 0.0319 mol; T = 25.0 °C
She reminds him to convert the temperature to kelvins
T = (25.0 +273.15) K = 298.15 K
Then she shows him how to do the calculation.

Isn't she smart?
Answer:
The molar mass of the protein is 12982.8 g/mol.
Explanation:
The osmptic pressure is given by:
π=MRT
Where,
M: is molarity of the solution
R: the ideal gas constant (0.0821 L·atm/mol·K)
T: the temperature in kelvins
Hence, we look for molarity:

= =5.584×10⁻³mol/l
As we have 2 ml of solution, we can get the moles quantity:
Moles of protein: 5.584×10⁻³
×2ml=1.117×10⁻⁵mol
Finally, the moles quantity is the division between the mass of the protein and the molar mass of the protein, so:
Moles=Mass/Molar mass
Molar mass= Mass/Moles=
=12982.8 g/mol
Gravitational potential energy is observed when an object is not in rest or is in motion. In this case, the helicopter is in motion where the direction is going upward with a negative potential energy. Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Answer:
kindly check the EXPLANATION SECTION
Explanation:
In order to be able to answer this question one has to consider the neutron proton ratio. Considering this ratio will allow us to determine the stability of a nuclei. The most important rule that helps us in determination of stability is that when the Neutron- Proton ratio of any nuclei ranges from to 1 to 1.5, then we say the nuclei is STABLE.
Also, we need to understand that when the Neutron- Proton ratio is LESS THAN 1 or GREATER THYAN 1.5, then we say the nuclei is UNSTABLE.
So, let us check which is stable and which is unstable:
a. 4 protons and 5 neutrons = Neutron- proton ratio = N/P = 5/4= stable.
b. 7 protons and 7 neutrons = Neutron- proton ratio = N/P = 7/7= 1 = stable.
c. 2 protons and 3 neutrons = Neutron- proton ratio = N/P = 3/5 =0.6 =unstable.
d. 3 protons and 0 neutrons = Neutron- proton ratio = N/P = 0/3= 0= unstable.
e. 6 protons and 5 neutrons = Neutron- proton ratio = N/P = 5/6= 0.83 = unstable.
f. 9 protons and 9 neutrons = Neutron- proton ratio = N/P = 9/9 = 1 = stable.
g. 8 protons and 7 neutrons = Neutron- proton ratio = N/P = 7/8 =0.875 = unstable.
h. 1 proton and 0 neutrons = Neutron- proton ratio = N/P = 0/1 =0 = unstable