answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
2 years ago
14

What should you do to reduce the risk of capsizing or swamping your boat in rough water?

Physics
1 answer:
Akimi4 [234]2 years ago
7 0
What you should do is reduce speed so as to be able to turn at controlled speeds, and you should also be careful when anchoring because you have to anchor from the bow rather than the stern to avoid<span> capsizing or swamping a boat when in rough water. If you don't do this, there's a high chance that you might capsize and often that can be dangerous both for you and your wallet.</span>
You might be interested in
A 0.200 kg plastic ball moves with a velocity of 0.30 m/s. It collides with a second plastic ball of mass 0.100 kg, which is mov
zzz [600]

Answer:

0.22m/s

Explanation:

The total momentum of the System is conserved. Total momentum of the system before the collision is equal to the total momentum of the system after collision. The total momentum is the sum of individual momentum of all the objects in that system.

momentum of an object = mass* velocity

Total Momentum before collision = 0.2*0.3 + 0.1*0.1= 0.07 kg⋅m/s;

Total momentum after collision = 0.1*0.26 + 0.2*x = 0.07;

Solve for x.

4 0
2 years ago
Bill leaves his 60 W desk lamp on every day, including weekends, for eight hours. After one month (30 days), how much total ener
maxonik [38]

' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.

That's all the physics we need to know to answer this question.
The rest is just arithmetic.

(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)

= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)

= 51,840,000 joules
__________________________________

Wait a minute !  Hold up !  Hee haw !  Whoa ! 
Excuse me.  That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's

(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)

= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)

= 14.4 kW·hour

Rounded to the nearest whole number:

14 kWh

7 0
2 years ago
An green hoop with mass mh = 2.8 kg and radius rh = 0.13 m hangs from a string that goes over a blue solid disk pulley with mass
Otrada [13]
The only force on the system is the mass of the hoop F net = 2.8kg*9.81m/s^2 = 27.468 N The mass equal of the rolling sphere is found by: the sphere rotates around the contact point with the table. 
So by applying the theorem of parallel axes, the moment of inertia of the sphere is computed by:I = 2/5*mR^2 for rotation about the center of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. 
I = 7/5*mR^2 M = 7/5*m 
Therefore, linear acceleration is computed by:F/m = 27.468 / (2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2 
7 0
2 years ago
Two stunt drivers drive directly toward each other. At time t=0 the two cars are a distance D apart, car 1 is at rest, and car 2
lesantik [10]

Answer: Hello there!

We know this:

The distance between the cars at t= 0 is D.

car 2 has an initial velocity of v0 and no acceleration.

car 1 has no initial velocity and a acceleration of ax that starts at  t = 0

then we could obtain the acceleration of the car 1 by integrating the acceleration over the time; this is v(t) = ax*t where there is not a constant of integration because the car 1 has no initial velocity.

Because the cars are moving against each other, we want to se at what time t they meet, this is equivalent to see:  

position of car 1 + position of car 2 = D

and in this way we could ignore constants of integration :D

for the position of each car we integrate again:  

P1(t) = (1/2)ax*t^2 and P2(t) = v0t

v0t + (1/2)ax*t^2 = D

v0t + (1/2)ax*t^2  - D = 0

now we can solve it for t using the Bhaskara equation.

t = \frac{-v0 +\sqrt{v0^{2} + 4*(1/2)ax*D } }{2(1/2)ax} =\frac{-v0 +\sqrt{v0^{2} + 2ax*D } }{ax}

that we cant solve witout knowing the values for v0, D and ax. But you could replace them in that equation and obtain the time, where you must remember that you need to choose the positive solution (because this quadratic equation has two solutions).

Now we want to know the velocity of car 1 just before the impact, this can be calculated by valuating the time in the as the time that we just found in the velocity equation for the car 1, this is:

v(\frac{-v0 +\sqrt{v0^{2} + 2ax*D } }{ax}) = ax*\frac{-v0 +\sqrt{v0^{2} + 2ax*D } }{ax} = {-v0 +\sqrt{v0^{2} + 2ax*D }

where again, you need to replace the values of v0, D and ax.

7 0
2 years ago
List some reasons why growth characteristics are more useful on agar plates than on agar slants
SpyIntel [72]
Usually, in culturing of the bacteria we have a slant and then portion f it is transferred to the agar plate. The growth characteristics are more useful in the agar plates because it is where we really do the observation because bacteria in slants are still to be transferred in the agar plates. 
5 0
2 years ago
Read 2 more answers
Other questions:
  • Phyllis had always been the one to take care of Douglas, now he feels as if it is his duty and privilege to take care of her, ev
    13·2 answers
  • Why do charges build up on clothing in an electric dryer?
    7·2 answers
  • Which statement best explains the relationship between the wavelengths and the frequencies of all the waves in the electromagnet
    12·1 answer
  • A government agency estimated that air bags have saved over 14,000 lives as of April 2004 in the United States. (They also state
    13·1 answer
  • A water wave traveling in a straight line on a lake is described by the equation:y(x,t)=(2.75cm)cos(0.410rad/cm x+6.20rad/s t)Wh
    11·1 answer
  • Two ropes in a vertical plane exert equal-magnitude forces on a hanging weight but pull with an angle of 72.0° between them. Wha
    6·1 answer
  • Four distinguishable particles move freely in a room divided into octants (there are no actual partitions). Let the basic states
    6·1 answer
  • The diagram shows movement of thermal energy. At bottom a fire has red curved lines labeled Y with arrowheads pointing upward to
    12·2 answers
  • Light rays from stars bend toward smaller angles as they enter Earth's atmosphere. a. Explain why this happens using Snell's law
    8·1 answer
  • A source of emf is connected by wires to a resistor and electrons flow in the circuit the wire diameter is teh same throughout t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!