Answer:
Malignant melanoma cells would have active telomerases that constantly replenish and lengthen telomeres.
Explanation:
Telomerase can be described as enzymes which add the repetitive sequences called telomeres at the end of a chromosome. Telomeres can be described as repetitive sequences at the end of the chromosome which are involved in protecting the chromosome from any damage.
In a normal skin cell, the telomeres will shorten with time. But in a malignant skin cell, the telomerase will add the repetitive sequence again and again. The telomers will not be able to shorten.
Answer:
An unconditioned response.
Explanation:
Pavlov was the process of studying salivation in dogs as a part of a research program on chewing and digestion. This is known as a normal reflex that is under personal choice or control and also called an unlearned evolutionary response.
In terms of Pavlov's analysis of learning, Pavlov built a device that would help to accurately measure the amount of saliva produced by dogs. In the case of Pavlov dogs, the food is called as the stimulus and salivation is called as a response.
Percent error is a statistical tool used for evaluating precision. It is expressed as:
Percent error = | (experimental value - theoretical value) / theoretical value | x 100%
Experimental value represents the calculated value while the theoretical value represents the known value. A percent error value which is approaching zero means that your experimental value is close to the known value. Which can possibly mean that you have precise measurements. Calculations are as follows:
Percent Error = | (2.54 - 2.70) / 2.70 | x 100 =5.93%
Thus, the answer is b. 5.93%.
The answers are as follows:
1. <span>An inhibitor has a structure that is so similar to the substrate that it can bond to the enzyme just like the substrate: t</span>his is called competitive inhibitor. A competitive inhibitor will compete with the substrate for the active site of the enzyme and bind to the active site, thus incapacitating the substrate from binding to the active site.
2. An inhibitor binds to a site on the enzyme that is not the active site: this is called non competitive inhibitors. Non competitive inhibitors bind to other site in the enzyme which is not the active site of the enzyme. The binding of the inhibitor changes the conformation of the enzyme as well as the active site, thus making it impossible for the substrate to bind to the enzyme effectively.
3. <span>usually, a(n) inhibitor forms a covalent bond with an amino acid side group within the active site, which prevents the substrate from entering the active site or prevents catalytic activity: this is called irreversible or permanent inhibition. Permanent inhibitors form covalent bonds with the enzyme and prevent substrate from binding to the enzyme.
4. T</span><span>he competitive inhibitor competes with the substrate for the ACTIVE SITE on the enzyme: The active site of an enzyme is the place where the substrate normally bind in order to activate a enzyme. Competitive inhibitors are those inhibitors that compete with the substrate for the active site of the enzyme and prevent the substrate from binding there.
5. W</span><span>hen the noncompetitive inhibitor is bonded to the enzyme, the shape of the ENZYME is distorted. The non competitive inhibitors are those inhibitors that bind to other places in the enzyme instead of the active site. The binding of the non competitive inhibitor usually distort the shape and the conformation of the enzyme thus preventing the substrate from binding to it effectively.
6. E</span><span>nzyme inhibitors disrupt normal interactions between an enzyme and its SUBSTRATE. The principal function of enzyme inhibitor is to prevent the substrate from binding to the appropriate enzyme. This is usually done in the human system in order to regulate the activities of enzymes.</span>