Answer:
Explanation:I would need more info to understand this question but explaining molecules is pretty easy tho
Answer:
(a) I⁻ (charge 1-)
(b) Sr²⁺ (charge 2+)
(c) K⁺ (charge 1+)
(d) N³⁻ (charge 3-)
(e) S²⁻ (charge 2-)
(f) In³⁺ (charge 3+)
Explanation:
To predict the charge on a monoatomic ion we need to consider the octet rule: atoms will gain, lose or share electrons to complete their valence shell with 8 electrons.
(a) |
I has 7 valence electrons so it gains 1 electron to form I⁻ (charge 1-).
(b) Sr
Sr has 2 valence electrons so it loses 2 electrons to form Sr²⁺ (charge 2+).
(c) K
K has 1 valence electron so it loses 1 electron to form K⁺ (charge 1+).
(d) N
N has 5 valence electrons so it gains 3 electrons to form N³⁻ (charge 3-).
(e) S
S has 6 valence electrons so it gains 2 electrons to form S²⁻ (charge 2-).
(f) In
In has 3 valence electrons so it loses 3 electrons to form In³⁺ (charge 3+).
<h3>
Answer:</h3>
The Equilibrium would shift to produce more NO
<h3>
Explanation:</h3>
The reaction is;
N₂(g) + O₂(g) ⇆ 2NO(g)
- When a reaction is at equilibrium then the forward reaction rate will be equivalent to the reverse reaction rate. Additionally, the concentration of the reactants and products are the same.
- From Le Chatelier's principle, additional reactants favor the formation of more products while additional products favor the formation of more reactants.
- For example, when more oxygen is added then more Nitrogen (II) oxide will be formed.
- Oxygen is a reactant and when increased it favors forward reaction which leads to the formation of more NO which is the product.
No of moles of naoh = 2.40 ÷ (23+16+1) = 0.06mol
no of moles of na2co3 = 0.06 ÷ 2 = 0.03mol
mass of na2co3 = 0.03 × (23×2+12+16×3) = 0.03 × 106 = 3.18g