Answer: 8.1 x 10^24
Explanation:
I(t) = (0.6 A) e^(-t/6 hr)
I'll leave out units for neatness: I(t) = 0.6e^(-t/6)
If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).
For neatness let k = 1/(6x3600) = 4.63x10^-5, then:
I(t) = 0.6e^(-kt)
Providing t is in seconds, total charge Q in coulombs is
Q= ∫ I(t).dt evaluated from t=0 to t=∞.
Q = ∫(0.6e^(-kt)
= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.
= -(0.6/k)[e^-∞ - e^-0]
= -0.6/k[0 - 1]
= 0.6/k
= 0.6/(4.63x10^-5)
= 12958 C
Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.
Given:
Ca = 3Cb (1)
where
Ca = heat capacity of object A
Cb = heat capacity f object B
Also,
Ta = 2Tb (2)
where
Ta = initial temperature of object A
Tb = initial temperature of object B.
Let
Tf = final equilibrium temperature of both objects,
Ma = mass of object A,
Mb = mass of object B.
Assuming that all heat exchange occurs exclusively between the two objects, then energy balance requires that
Ma*Ca*(Ta - Tf) = Mb*Cb*(Tf - Tb) (3)
Substitute (1) and (2) into (3).
Ma*(3Cb)*(2Tb - Tf) = Mb*Cb*(Tf - Tb)
3(Ma/Mb)*(2Tb - Tf) = Tf - Tb
Define k = Ma/Mb, the ratio f the masses.
Then
3k(2Tb - Tf) = Tf - Tb
Tf(1+3k) = Tb(1+6k)
Tf = [(1+6k)/(1+3k)]*Tb
Answer:

where
Answer:
F4.0
Explanation:
To obtain a shutter speed of 1/1000 s to avoid any blur motion the f-number should be changed to F4.0 because the light intensity goes up by a factor of 2 when the f-number is decreased by the square root of 2.
On comparing values , we see that student which has the largest percent error is <u>A. Student 4: 9.61 m/s2
.</u>
<u>Explanation:</u>
Here, we have Four students measured the acceleration of gravity. The accepted value for their location is 9.78m/s2. Let's calculate which student’s measurement has the largest percent error :
<u>A. Student 4: 9.61 m/s2
</u>
Percentage of error =
%.
<u>B. Student 3: 9.88 m/s2
</u>
Percentage of error =
%.
<u>C. Student 2: 9.79 m/s2
</u>
Percentage of error =
% .
<u>D. Student 1: 9.78 m/s2</u>
Percentage of error =
% .
On comparing values , we see that student which has the largest percent error is <u>A. Student 4: 9.61 m/s2
.</u>