answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
asambeis [7]
2 years ago
14

A transformer changes the 10,000 v power line to 120 v. if the primary coil contains 750 turns, how many turns are on the second

ary?
Physics
1 answer:
inn [45]2 years ago
5 0
For a transformer, the ratio between the number of turns of primary and secondary coil is the same as the ratio between the voltages on the two coils:
\frac{N_p}{N_s}= \frac{V_p}{V_s}
Where N_p and N_s are the number of turns in the primary and secondary coils, while V_p and V_s are the voltages on the two coils.

Using the data of the problem: N_p=750, V_p=10000 V and V_s=120 V, we can find N_s, the number of turns of the secondary coil:
N_s=N_p  \frac{V_s}{V_p}=750  \frac{120 V}{10000 V}=9
You might be interested in
If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
e-lub [12.9K]
E or C 10 hope this helps
7 0
2 years ago
A vertical spring of constant k = 400 N/m hangs at rest. When a 2 kg mass is attached to it, and it is released, the spring exte
Viefleur [7K]

Answer:

4.9 cm

Explanation:

From Hook's Law,

F = ke......................... Equation 1

Where F= force, e = extension, k = spring constant.

Note: the Force acting on the the spring is the weight of the mass.

W = mg.

F = mg.................... Equation 2

Where m = mass, g = acceleration due to gravity

Substitute equation 2 into equation 1

mg = ke

make e the subject of the equation

e = mg/k............... Equation 3.

Given: m = 2 kg, g = 9.8 m/s², k = 400 N/m

e = (2×9.8)/400

e = 19.6/400

e = 0.049 m

e = 4.9 cm

3 0
2 years ago
A 12.0 kg mass, fastened to the end of an aluminum wire with an unstretched length of 0.50 m, is whirled in a vertical circle wi
Kamila [148]

Answer:

A.)1.52cm

B.)1.18cm

Explanation:

angular speed of 120 rev/min.

cross sectional area=0.14cm²

mass=12kg

F=120±12ω²r

=120±12(120×2π/60)^2 ×0.50

=828N or 1068N

To calculate the elongation of the wire for lowest and highest point

δ=F/A

= 1068/0.5

δ=2136MPa

'E' which is the modulus of elasticity for alluminium is 70000MPa

δ=ξl=φl/E =2136×50/70000=1.52cm

δ=F/A=828/0.5

=1656MPa

δ=ξl=φl/E

=1656×50/70000=1.18cm

δ=1.18cm

6 0
2 years ago
Read 2 more answers
"The predictions of Einstein’s Theory of General Relativity were tested on a double pulsar system in January of 2004. His equati
Rasek [7]

Answer:

99.95%

Explanation:

A double pulsar system named PSR J0737-3039A/B  in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.

A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.

8 0
2 years ago
A ball weighing 1 lb is attached to a string 2 feet long and is whirled in a vertical circle at a constant speed of 10 ft/sec.
fredd [130]

Explanation:

It is given that,

Mass of the ball, m = 1 lb

Length of the string, l = r = 2 ft

Speed of motion, v = 10 ft/s

(a) The net tension in the string when the ball is at the top of the circle is given by :

F=\dfrac{mv^2}{r}-mg

F=m(\dfrac{v^2}{r}-g)

F=1\ lb\times (\dfrac{(10\ ft/s)^2}{2}-1\ lb\times 32\ ft/s^2)

F = 18 N

(b) The net tension in the string when the ball is at the bottom of the circle is given by :

F=\dfrac{mv^2}{r}+mg

F=m(\dfrac{v^2}{r}+g)

F=1\ lb\times (\dfrac{(10\ ft/s)^2}{2}+1\ lb\times 32\ ft/s^2)

F = 82 N

(c) Let h is the height where the ball at certain time from the top. So,

T=mg(\dfrac{r-h}{r})+\dfrac{mv^2}{r}

T=\dfrac{m}{r}(g(r-h)+v^2)

Since, v^2=u^2-2gh

T=\dfrac{m}{r}(u^2-3gh+gr)

Hence, this is the required solution.

6 0
2 years ago
Other questions:
  • The energy gaps between the valence and conduction bands are called band gaps. For silicon, the band gap is 1.1 eV; for fused si
    6·1 answer
  • A kayaker needs to paddle north across a 100-m-wide harbor. the tide is going out, creating a tidal current that flows to the ea
    14·2 answers
  • D=? V=100mL M=1.5kg=___g
    11·1 answer
  • Which of the following four circuit diagrams best represents the experiment described in this problem?
    12·1 answer
  • A straight, nonconducting plastic wire 9.50 cm long carries a charge density of 130 nC/m distributed uniformly along its length.
    5·1 answer
  • 3.00 kg block moving 2.09 m/s right hits a 2.22 kg block moving 3.92 m/s left. afterwards, the 3.00 kg block moves 1.71 m/s left
    11·1 answer
  • A 2.0 m × 4.0 m flat carpet acquires a uniformly distributed charge of −10 μC after you and your friends walk across it several
    15·1 answer
  • ery large accelerations can injure the body, especially if they last for a considerable length of time. One model used to gauge
    8·1 answer
  • A stunt man projects himself horizontal from a height of 60m. He lands 150m away from where he was launched. How fast was he lau
    12·1 answer
  • Which of these has the most kinetic energy
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!