Answer : The percent composition of Pb and Sn in atom is, 3.21 % and 96.8 % respectively.
Explanation :
First we have to calculate the number of atoms in 5.5 wt% Pb and 94.5 wt% of Sn.
As, 207.2 g of lead contains
atoms
So, 5.5 g of lead contains
atoms
and,
As, 118.71 g of lead contains
atoms
So, 94.5 g of lead contains
atoms
Now we have to calculate the percent composition of Pb and Sn in atom.


and,


Thus, the percent composition of Pb and Sn in atom is, 3.21 % and 96.8 % respectively.
Answer: 1.14
Explanation:

To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

To calculate pH of gastric juice:
molarity of
= 0.072
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)

Thus the pH of the gastric juice is 1.14
Answer:
−2399.33 kJ
Explanation:
If NH₄NO₃ reacts with fuel oil to give a ΔH of -7198 for every 3 moles of NH₄NO₃
What is the enthalpy change for 1.0 mole of NH₄NO₃ in this reaction
∴ For every 1 mole, we will have
of the total enthaply of the 3 moles
so, to determine the 1 mole; we have:

= −2399.33 kJ
∴ the enthalpy change for 1.0 mole of NH₄NO₃ in this reaction = −2399.33 kJ
Answer:
Molecular formula = C₆H₁₂O₆
Explanation:
Given data:
Mass of hydrogen = 31.7 g
Mass of carbon = 283.4 g
Mass of oxygen = 377.4 g
Molar mass of compound = 176.124 g/mol
Molecular formula = ?
Solution:
Number of gram atoms of H = 31.7 / 1.01 = 31.4
Number of gram atoms of O = 377.4 / 16 = 23.6
Number of gram atoms of C = 283.4 / 12 = 23.6
Atomic ratio:
C : H : O
23.6/23.6 : 31.4/23.6 : 23.6/23.6
1 : 1.33 : 1
C : H : O =3 (1 : 1.33 : 1
)
Empirical formula is C₃H₄O₃.
Molecular formula:
Molecular formula = n (empirical formula)
n = molar mass of compound / empirical formula mass
Empirical formula mass = 3×12+4+3×16 = 88
n = 176.124 / 88
n = 12
Molecular formula = n (empirical formula)
Molecular formula = 2 (C₃H₄O₃)
Molecular formula = C₆H₁₂O₆
Answer: The mass of the gas is 18.3 g/mol.
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:




Squaring both sides and solving for 

Hence, the molar mas of unknown gas is 18.3 g/mol.