answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sever21 [200]
2 years ago
11

Which statement is correct? Salts are formed by the reaction of bases with water. Most salts are ionic and are soluble in water.

Most salts are insoluble in water and lack electrical charges. Solutions of salt and water do not conduct electricity.
Chemistry
2 answers:
Lorico [155]2 years ago
7 0

Answer:

The correct statement is "most salts are ionic and are soluble in water"

Explanation:

Salts are made up of cation (positively charged species) and anion (negatively charged species). These oppositely charged species are held together by ionic forces.

Water is a polar solvent.Therefore it prefers polar solutes. Salts are therefore likely to be soluble in water.

Acid and base reacts to give salt and water. Hence salts are produced from acid base reaction.

In aqueous solution, cations and anions remain in separated form and therefore free to move. Hence aqueous solution of salt can conduct electricity.

Studentka2010 [4]2 years ago
3 0
<span>Salts are formed by the reaction of bases with water. -  FALSE
</span><span>Most salts are ionic and are soluble in water. -  TRUE
</span><span>Most salts are insoluble in water and lack electrical charges. - FALSE
</span><span>Solutions of salt and water do not conduct electricity. - FALSE

:)</span>
You might be interested in
The unit cell for cr2o3 has hexagonal symmetry with lattice parameters a = 0.4961 nm and c = 1.360 nm. If the density of this ma
IRINA_888 [86]

To calculate the packing factor, first calculate the area and volume of unit cell.

Area is calculated as:

A=6R^{2}\sqrt{3}

Here, R is radius and is related to a as follows:

R=\frac{a}{2}

Putting the value in expression for area,

A=6(\frac{a}{2})^{2}\sqrt{3}=1.5a^{2}\sqrt{3}

The value of a is 0.4961 nm

Since, 1 nm=10^{-7}cm

Thus, 0.4961 nm=4.961\times 10^{-8} cm

Putting the value,

Area=1.5(4.961\times 10^{-8}cm)^{2}\sqrt{3}=6.39\times 10^{-15}cm^{2}

Now, volume can be calculated as follows:

V=Area\times c

The value of c is 1.360 nm or 1.360\times 10^{-7} cm

Putting the value,

V=(6.39\times 10^{-15}cm^{2})\times (1.360\times 10^{-7} cm)=8.7\times 10^{-22}cm^{3}

now, number of atom in unit cell can be calculated by using the following formula:

n=\frac{\rho N_{A}V_{c}}{A}

Here, A is atomic mass of Cr_{2}O_{3} is 151.99 g/mol.

Putting all the values,

n=\frac{(5.22 g/cm^{3})(6.023\times 10^{23} mol^{-1})(8.7\times 10^{-22}cm^{3})}{(151.99 g/mol)}\approx 18

Thus, there will be 18 Cr_{2}O_{3} units in 1 unit cell.

Since, there are 2 Cr atoms and 3 oxygen atoms thus, units of chromium and oxygen will be 2×18=36 and 3×18=54 respectively.

The atomic radii of Cr^{3+} and O^{2-} is 62 pm and 140 pm respectively.

Converting them into cm:

1 pm=10^{-10}cm

Thus,

r_{Cr^{3+}}=6.2\times 10^{-9}cm

and,

r_{O^{2-}}=1.4\times 10^{-8}cm

Volume of sphere will be sum of volume of total number of cations and anions thus,

V_{S}=V_{Cr^{3+}}+V_{O^{2-}}

Since, volume of sphere is V=\frac{4}{3}\pi r^{3},

V_{S}=36\left ( \frac{4}{3}\pi (r_{Cr^{3+})^{3}} \right )+54\left ( \frac{4}{3}\pi (r_{O^{2-})^{3}} \right )

Putting the values,

V_{S}=36\left ( \frac{4}{3}(3.14) (6.2\times 10^{-9} cm)^{3}} \right )+54\left ( \frac{4}{3}(3.14) (1.4\times 10^{-8} cm)^{3}} \right )=6.6\times 10^{-22}\times 10^{-8}cm^{3}

The atomic packing factor is ratio of volume of sphere and volume of crystal, thus,

packing factor=\frac{V_{S}}{V_{C}}=\frac{6.6\times 10^{-22}cm^{3}}{8.7\times 10^{-22}cm^{3}}=0.758

Thus, atomic packing factor is 0.758.

6 0
2 years ago
Read 2 more answers
jan is holding an ice cube. what causes the ice to melt? thermal energy from the ice is transferred to the air. thermal energy f
loris [4]

Answer: Ice is melting due to the transfer of thermal energy from Jan's hand to ice.

Explanation: The melting of ice is a physical change and is happening when the thermal energy from Jan's hand is transferred to ice. Due to this energy transfer, the particles of ice starts to move faster and hence, making the ice melt.

In this, the physical state of ice is changing from solid to liquid state.

H_2O(s)\rightleftharpoons H_2O(l)

8 0
2 years ago
Read 2 more answers
Suppose that a metal oxide of formula m2o3 were soluble in water. what would be the major product or products of dissolving the
V125BC [204]
Meta oxides are compounds that are formed by reaction of metals with oxygen. If these compounds are placed in water, the ionic components of this substance will dissociate.

The dissociation of metal oxides in water will likely form,
   
    2M³⁺ + 3O²⁻
6 0
2 years ago
Exactly 1.0 mol N2O4 is placed in an empty 1.0-L container and allowed to reach equilibrium described by the equation N2O4(g) 2N
Amanda [17]

Answer : The correct option is, (a) 0.44

Explanation :

First we have to calculate the concentration of N_2O_4.

\text{Concentration of }N_2O_4=\frac{\text{Moles of }N_2O_4}{\text{Volume of solution}}

\text{Concentration of }N_2O_4=\frac{1.0moles}{1.0L}=1.0M

Now we have to calculate the dissociated concentration of N_2O_4.

The balanced equilibrium reaction is,

                             N_2O_4(g)\rightleftharpoons 2NO_2(aq)

Initial conc.           1.0 M          0

At eqm. conc.     (1.0-x) M    (2x) M

As we are given,

The percent of dissociation of N_2O_4 = \alpha = 28.0 %

So, the dissociate concentration of N_2O_4 = C\alpha=1.0M\times \frac{28.0}{100}=0.28M

The value of x = C\alpha = 0.28 M

Now we have to calculate the concentration of N_2O_4\text{ and }NO_2 at equilibrium.

Concentration of N_2O_4 = 1.0 - x  = 1.0 - 0.28 = 0.72 M

Concentration of NO_2 = 2x = 2 × 0.28 = 0.56 M

Now we have to calculate the equilibrium constant for the reaction.

The expression of equilibrium constant for the reaction will be:

K_c=\frac{[NO_2]^2}{[N_2O_4]}

Now put all the values in this expression, we get :

K_c=\frac{(0.56)^2}{0.72}=0.44

Therefore, the equilibrium constant K_c for the reaction is, 0.44

8 0
2 years ago
For a ternary solution at constant T and P, the composition dependence of molar property M is given by: M = x1M1 + x2M2 + x3M3 +
AveGali [126]

Answer:

M_{i} = M_{i} + C_{xjxk} (1-2x_{i}) ...1

M^{\alpha } = M_{i} + CX_{xjxk}          ...2

Explanation:

The ternary constant is given by the following equation:

The symbol XiXi, where XX is an extensive property of a homogeneous mixture and the subscript ii identifies a constituent species of the mixture, denotes the partial molar quantity of species ii defined by

M_{i}  = [\frac{d(nM)}{dn_{i} }]_{P,t,n,j}

This is the rate at which property  X  changes with the amount of species  i  added to the mixture as the temperature, the pressure, and the amounts of all other species are kept constant.  A partial molar quantity is an intensive state function.  Its value depends on the temperature, pressure, and composition of the mixture.

In a multi phase system (in this case, a ternary system), the components resolved give:

M_{i} = M_{i} + C_{xjxk} (1-2x_{i})

and M^{\alpha } = M_{i} + CX_{xjxk}

5 0
2 years ago
Other questions:
  • On a cool morning, Uyen’s breath can form a cloud when she breathes out. Which changes of state are most responsible for Uyen se
    6·2 answers
  • 28 ml of 0.10 m hcl is added to 60 ml of 0.10 m sr(oh)2. determine the concentration of oh− in the resulting solution.
    6·2 answers
  • Write the lewis structure for ch2clcoo−. assign a formal charge for any atom with a non-zero formal charge.
    15·1 answer
  • If you have 10cm of snow with a volume of 40mL and a density of 0.5 g/mL how many inches of rain is this?
    5·1 answer
  • For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 175-cm-long vertical cylinder with both the top a
    13·1 answer
  • White phosphorus (P4) is used to produce phosphorus oxides, such as P4O10. How many kilograms of P4O10 would be produced from 41
    7·1 answer
  • Calculate the number of grams of Mg needed for this reaction to release enough energy to increase the temperature of 78 mL of wa
    10·1 answer
  • Min is conducting an experiment where he compares the properties of water and lemonade. The first stage of the experiment is foc
    5·1 answer
  • Could the other molecules in this simulation (argon, oxygen, and water) be considered pure substances? Explain your thinking.
    14·1 answer
  • 9 The Haber process is a reversible reaction. N2(g) + 3H2(g) 2NH3(g) The reaction has a 30% yield of ammonia. Which volume of am
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!