Answer:
(A) pH < 1 the predominant form is the cation: H3C-C(H)(NH3+)-COOH
(B) pH = pl the predominant form is the zwitterion H3C-C(H)(NH3+)-COO-
(C) pH > 11 the predominant form is the anion: H3C-C(H)(NH2)-COO-
(D) Does not occurs in any significant pH: H3C-C(H)(NH2)-COOH
Explanation:
Amino acids are bifunctional because they have an amine group and a carboxyl group. The amine group is a weak base and the carboxyl group is a weak acid, but the pKa of both groups will depend on the whole structure of the amino acid. Also, every amino acid has an isoelectric point (pI), which means the pH were the predominant form of the amino acid is the zwitterion. The structure of the alanine (CH3CH2NH2COOH) shows it has the carboxyl group at C1 with a pKa1 of 2.3 and the amino group at C2 whit the pKa2 of 9.7. The isoelectric poin (pI) of Alanine is 6. Consequently, the protonation of the molecule will depend on the pH of the solution. There are three possibilities:
1) If the pH is under the pKa of the carboxyl group (2.3) the predominant form will be with the amino group protonated, forming a cation (CH3CH(NH3+)COOH).
2) If the pH is between pKa1 (2.3) and pKa2 (9.7) the predominant form will be the zwitterion (CH3CH(NH3+)(COO-)).
3) If the pH is upper the pKa2 of the amino group (9.7) the predominant form will be with the carboxyl group deprotonated, forming an anion (CH3CHNH2(COO-)).
To determine the number of potassium laid side by side by a given distance, we simply divide the total distance to the diameter of each atom. The diameter is twice the radius of the atom. We calculate as follows:
number of atoms = 4770 / 231x10^-12 = 2.06x10^13 atoms
The change is that the air goes up then forms clouds.
Answer: C. 25.6 kPa
Explanation:
The Gauge pressure is defined as the amount of pressure in a fluid that exceeds the amount of pressure in the atmosphere.
As such, the formula will be,
PG = PT – PA
Where,
PG is Gauge Pressure
PT is Absolute Pressure
PA is Atmospheric Pressure
Inputted in the formula,
PG = 125.4 - 99.8
PG = 25.6 kPa
The gauge pressure inside the container is 25.6kPa which is option C.
Coulomb's law mathematically is:
F = kQ₁Q₂/r²
we integrate this with respect to distance to obtain the expression for energy:
E = kQ₁Q₂/r; where k is the Coulomb's constant = 9 x 10⁹; Q are the charges, r is the seperation
Charge on proton = charge on electron = 1.6 x 10⁻¹⁹ C
E = (9 x 10⁹ x 1.6 x 10⁻¹⁹ x 1.6 x 10⁻¹⁹) / (185 x 10⁻¹²)
E = 1.24 x 10⁻¹⁸ Joules per proton/electron pair
Number of pairs in one mole = 6.02 x 10²³
Energy = 6.02 x 10²³ x 1.24 x 10⁻¹⁸
= 746.5 kJ