<span>We can think this through intuitively. A frequency of 256 Hz means that the wave has 256 cycles each second. If the wavelength is 1.33 meters, then there are 256 of them each second. Therefore, we just need to multiply the wavelength by the frequency to find the speed of sound. (Note that the units Hz = 1 / s)
v = (frequency) x (wavelength)
v = (256 Hz) x (1.33 m)
v = 340.5 m/s
The speed of sound in the vicinity of the fork is 340.5 m/s</span>
Answer:
- The total distance traveled is 28 inches.
- The displacement is 2 inches to the east.
Explanation:
Lets put a frame of reference in the problem. Starting the frame of reference at the point with the 0-inch mark, and making the unit vector
pointing in the west direction, the ant start at position

Then, moves to

so, the distance traveled here is



after this, the ant travels to

so, the distance traveled here is



The total distance traveled will be:

The displacement is the final position vector minus the initial position vector:



This is 2 inches to the east.
The mass of one washer is 0.0049 kg.
The mass of two washers is 0.0098 kg.
The mass of three washers is 0.0147 kg.
The mass of four washers is 0.0196 kg.
Answer:
|v| = 8.7 cm/s
Explanation:
given:
mass m = 4 kg
spring constant k = 1 N/cm = 100 N/m
at time t = 0:
amplitude A = 0.02m
unknown: velocity v at position y = 0.01 m

1. Finding Ф from the initial conditions:

2. Finding time t at position y = 1 cm:

3. Find velocity v at time t from equation 2:

The final answer is B hope its helps