Given:
I=8A
t=2second
Potential difference,V=120-100=20volt
Workdone=V×i×t
=20×8×2
=320 joule.
To solve this exercise it is necessary to apply the kinematic equations of angular motion.
By definition we know that the displacement when there is constant angular velocity is

From our given data we know that,



Moreover we know that

Therefore for time t=8.1s we have,



That number in revolution is:


Here, we see that there are 15 complete revolutions
And 0.108 revolutions i not complete, so the tunable rotation is

Therefore the angle of the speck at a time 8.1s is 
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03
Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:

where

is the coefficient of friction, while N is the normal force. So we have:

since we know that F=300 N and

, we can find N, the magnitude of the normal force:

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is

due to the presence of the oil. Therefore, we have:
The glass which has the greatest liquid pressure
at the bottom is all 3 have equal non-zero pressure at the bottom. The
correct answer between all the choices given is the first choice or letter A. I
am hoping that this answer has satisfied your query about and it will be able
to help you.