answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
2 years ago
3

A sample contains 430 mg of mercury. How many significant figures are in the number?

Chemistry
1 answer:
Svetach [21]2 years ago
5 0
2 significant figures
You might be interested in
ANSWER Soon!!
vichka [17]

Answer:

  • 1. 0.1683 mol
  • 2. 1.191 g
  • 3. 0.02695 mol
  • 4. Na₂Cl₃
  • 5. The empirical formula obtained is not correct. This is likely due to experimental errors, since much precision was required (the masses are determined in thousandths of grams).

Explanation:

<em><u></u></em>

<em><u>1. How many moles of elemental sodium were used in the reaction?</u></em>

Since all of the solid sodium is used up by the reaction, you can cancluate the number of moles of elemental sodium used dividing the mass by the molar mass:

  • number of moles = mass in grams / atomic mass

  • mass in grams = 0.3870 g (given)

  • atomic mass = 22.990 g/mol

  • number of moles = 0.3870 g / 22.990 g/mol = 0.1683 mol

<u><em>2. What is the mass of chlorine gas used in the reaction?</em></u>

a) Mass of chlorine gas introduced in the flask = mass of the stoppered flask after filling it with chlorine gas - mass of the empty flask with the sopper

  • Mass of chlorine gas introduced = 158.1743g - 156.1870g = 1.9873 g

b) Mass of chlorine gas unreacted = 0.7962 g (given)

c) Mass of chlorine gas used = mass of chorine gas introduced in the flask - mass of chlorine gass un reacted

  • Mass of chlorine gas used = 1.9873g - 0.7962g = 1.1911g

<u><em>3. How many moles of chlorine were used in the reaction?</em></u>

  • molar mass of chlorine gas, Cl₂ = 2 × 35.453 g/mol = 70.906 g/mol

  • number of moles = mass in grams / molar mass = 1.911g / 70.906g/mol = 0.02695 mol

<u><em>4. What is the empirical formula of sodium chloride based on the experimental data?</em></u>

Divide the number of moles of each element by the smalles number of moles:

  • Na: 0.01683 / 0.01683 = 1
  • Cl = 0.02695 / 0.01683 = 1.6

Multiply by 2 to obtain whole numbers:

  • Na = 2
  • Cl = 3.2 = 3

  • Empirical formula Na₂Cl₃

<u><em></em></u>

<u><em>5. Was the empirical formula you obtained correct using the chemists data correct? Why? </em></u>

<u><em></em></u>

No, the empirical formula you obtained using the chemists data is not correct, because the correct empirical formula of sodium chloride is NaCl.

That is, there is 1 atom of sodium per every atom of chlorine in one chemical formula of NaCl, but that is not reflected by the empirical formula Na₂Cl₃.

That is a demostration of big experimental errors. You can speculate that the errors are likely due to problems of procedure collecting the gas or errors in measuring the masses.

As you see, the masses are measured to thousandths of grams, which requires much precision; thus smalls absolute errors could produce huge relative errors.

7 0
2 years ago
For scuba dives below 150 ft, helium is often used to replace nitrogen in the scuba tank. If 15.2 g of He(g) and 30.6 g of O2(g)
abruzzese [7]

Answer:

see explanation below

Explanation:

To do this exercise, we need to use the following expression:

P = nRT/V

This is the equation for an ideal gas. so, we have the temperature of 22 °C, R is the gas constant which is 0.082 L atm / mol K, V is the volume in this case, 5 L, and n is the moles, which we do not have, but we can calculate it.

For the case of the oxygen (AW = 16 g/mol):

n = 30.6 / 32 = 0.956 moles

For the case of helium (AW = 4 g/mol)_

n = 15.2 / 4 = 3.8 moles

Now that we have the moles, let's calculate the pressures:

P1 = 0.956 * 0.082 * 295 / 5

P1 = 4.63 atm

P2 = 3.8 * 0.082 * 295 / 5

P2 = 18.38 atm

Finally the total pressure:

Pt = 4.63 + 18.38

Pt = 23.01 atm

7 0
2 years ago
Calculate the mass in grams of 0.800 mole of H2CO3. g
PilotLPTM [1.2K]
MH₂CO₃: (1g×2) + 12g + (16g×3) = 62 g/mol

1 mol --- 62g
0,8 mol -- X
X = 0,8×62
X = 49,6g
6 0
2 years ago
Read 2 more answers
Calculate the wavelength in meters of electromagnetic radiation that has a frequency of 1.09 × 10⁸ s⁻¹. (c = 3.00 X 10⁸ m/s)
fenix001 [56]

Answer:

2.75X10^16

Explanation:

C=FXwavelength

wavelength=C/F

7 0
2 years ago
In acidic solution, the breakdown of sucrose into glucose and fructose has this rate law: rate = k[H+][sucrose].
Karo-lina-s [1.5K]

Answer:

a)If concentration of [Sucrose] is changed to 2.5 M than rate will be increased by the factor of 2.5.

b)If concentration of [Sucrose] is changed to 0.5 M than rate will be increased by the factor of 0.5.

c)If concentration of  [H^+] is changed to 0.0001 M than rate will be increased by the factor of 0.01.

d) If concentration when [sucrose] and[H^+] both are changed to 0.1 M than rate will be increased by the factor of 1.

Explanation:

Sucrose +  H^+\rightarrow  fructose+ glucose

The rate law of the reaction is given as:

R=k[H^+][sucrose]

[H^+]=0.01M

[sucrose]= 1.0 M

R=k[0.01M][1.0 M]..[1]

a)

The rate of the reaction when [Sucrose] is changed to 2.5 M = R'

R'=[0.01 M][2.5 M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.01 M][2.5 M]}{k[0.01M][1.0 M]}

R'=2.5\times R

If concentration of [Sucrose] is changed to 2.5 M than rate will be increased by the factor of 2.5.

b)

The rate of the reaction when [Sucrose] is changed to 0.5 M = R'

R'=[0.01 M][0.5 M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.01 M][0.5 M]}{k[0.01M][1.0 M]}

R'=2.5\times R

If concentration of [Sucrose] is changed to 0.5 M than rate will be increased by the factor of 0.5.

c)

The rate of the reaction when [H^+] is changed to 0.001 M = R'

R'=[0.0001 M][1.0 M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.0001 M][1.0M]}{k[0.01M][1.0 M]}

R'=0.01\times R

If concentration of  [H^+] is changed to 0.0001 M than rate will be increased by the factor of 0.01.

d)

The rate of the reaction when [sucrose] and[H^+] both are changed to 0.1 M = R'

R'=[0.1M][0.1M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.1M][0.1M]}{k[0.01M][1.0 M]}

R'=1\times R

If concentration when [sucrose] and[H^+] both are changed to 0.1 M than rate will be increased by the factor of 1.

5 0
2 years ago
Other questions:
  • Joe is lifting boxes to load a trailer. To follow proper lifting procedures, Joe should:
    7·1 answer
  • How do I Unscramble this?<br><br> reusirtneadn rahi<br><br> _ _ _ _ _ _ _ _ _ _ _ _ hair
    14·2 answers
  • A sample of ch4o with a mass of 32.0 g contains ________ molecules of ch4o.
    7·1 answer
  • When 12 moles of o2 react with 1.1 mole of c10h8 what is the limiting reactant?
    5·2 answers
  • What is the ratio of the diffusion rates of cl2 and o2? rate cl2 : o2 = 0.47 0.67 0.45 0.69 1.5?
    15·1 answer
  • Suppose you have equal amounts of three substances labeled A, B, and C. Then you add 350 mL of water to each, and then wait so t
    11·2 answers
  • Identify the equations that show ionization. Check all that apply.
    14·1 answer
  • We would like to make a golden standard kilogram in the shape of circular cylinder. The density of gold is 19.32 g/cm3. a) Find
    9·1 answer
  • sekiranya kutu tinggal di badan arnab dan menghisap darah arnab , apakah jenis interaksi antara kutu dengan arnab ?​
    5·1 answer
  • What is the buoyant force of a dog that displaces 10 pounds of water?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!