answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trapecia [35]
2 years ago
5

When a speeding truck hits a stationary car, the car is deformed and heat is generated. What can you say about the kinetic energ

y of the system after the collision?
Physics
2 answers:
Aleks04 [339]2 years ago
8 0

Answer:

The kinetic energy of the system after the collossion is less than the kinetic energy of the system before the collision. This is because the heat generated from the collision which is a direct consequence of the friction between both vehicles and possibly the road too. This heat energy due to friction is not a conservative form of energy and cannot be regained in another form. So after the collision this energy is lost, thereby reducing the total kinetic energy the system had before the collision.

Explanation:

Collisions as these are inelastic collisions. For inelastic collisions, the total momentum is conserved before and after the collision. The kinetic energy on the other hand is not conserved. This is because in most cases some of the energy is lost due friction in the form of heat.

Elastic collisions on the other hand generally have the total momentum and kinetic energy conserved before and after collision.

Thank you for reading.

nadya68 [22]2 years ago
7 0
The Kinetic energy was transformed immediately into potential and thermal energy. 
You might be interested in
If a rock is thrown upward on the planet mars with a velocity of 14 m/s, its height (in meters) after t seconds is given by h =
crimeas [40]

<u>Answer:</u>

 Velocity of rock after 2 seconds = 6.56 m/s

<u>Explanation:</u>

 We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

Here height of rock in meters, h = 14t-1.86t^2

Comparing both the equations

    We will get initial velocity = 14 m/s(already given) and \frac{1}{2} a = -1.86

     So,  Acceleration, a = -3.72 m/s^2

 Now we have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

 When time is 2 seconds we need to find final velocity.

     v = 14 - 3.72 * 2 = 6.56 m/s.

  So, Velocity of rock after 2 seconds = 6.56 m/s  

6 0
2 years ago
A group of science and engineering students embarks on a quest to make an electrostatic projectile launcher. For their first tri
vekshin1

Electric charge on the plastic cube: 1.3\cdot 10^{-7}C

Explanation:

The electric potential around a charged sphere (such as the Van der Graaf) generator is given by

V(r)=\frac{kQ}{r}

where

k is the Coulomb's constant

Q is the charge on the sphere

r is the distance from the centre of the sphere

Here we have:

V = 200,000 V on the surface of the sphere, so at r = 12.0 cm

We need to find the voltage V' at 2.0 cm from the edge of the sphere, so at

r' = 12.0 + 2.0 = 14.0 cm

Since the voltage is inversely proportional to r, we can use:

Vr=V'r'\\V'=\frac{Vr}{r'}=\frac{(200,000)(12.0)}{14.0}=171,429 V

This is the potential at the location of the plastic cube.

Now we can use the law of conservation of energy, which states that the initial electric potential energy of the cube is totally converted into kinetic energy when the plastic cube is at infinite distance from the generator. So we can write:

qV' = \frac{1}{2}mv^2

where:

q is the charge on the plastic cube

V' is the potential at the location of the cube

m = 5.0 g = 0.005 kg is the mass of the cube

v = 3.0 m/s is the final speed of the cube

Solving for q, we find the charge on the cube:

q=\frac{mv^2}{2V'}=\frac{(0.005)(3.0)^2}{2(171,429)}=1.3\cdot 10^{-7}C

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
2 years ago
A force of 6.0 N pulls a box 0.40 m along a frictionless plane that is inclined at 36°. What work is being done by the pulling f
lys-0071 [83]

Answer:

Expression of work done is

W = Fd cos\theta

Work done to move the sled is given as 1.94 J

Explanation:

As we know that the formula of work done is given as

W = Fd cos\theta

here we know that

F = 6 N

d = 0.4 m

\theta = 36 degree

so we will have

W = 6 \times 0.4 cos36

W = 1.94 J

7 0
2 years ago
The equilibrium fraction of lattice sites that are vacant in silver (Ag) at 600°C is 1 × 10-6. Calculate the number of vacancies
algol [13]

Answer :

The number of vacancies (per meter cube) = 5.778 × 10^22/m^3.

Explanation:

Given,

Atomic mass of silver = 107.87 g/mol

Density of silver = 10.35 g/cm^3

Converting to g/m^3,

= 10.35 g/cm^3 × 10^6cm^3/m^3

= 10.35 × 10^6 g/m^3

Avogadro's number = 6.022 × 10^23 atoms/mol

Fraction of lattice sites that are vacant in silver = 1 × 10^-6

Nag = (Na * Da)/Aag

Where,

Nag = Total number of lattice sites in Ag

Na = Avogadro's number

Da = Density of silver

Aag = Atomic weight of silver

= (6.022 × 10^23 × (10.35 × 10^6)/107.87

= 5.778 × 10^28 atoms/m^3

The number of vacancies (per meter cube) = 5.778 × 10^28 × 1 × 10^-6

= 5.778 × 10^22/m^3.

6 0
2 years ago
Calcular la resistencia de una varilla de grafito de 170 cm de longitud y 60 mm2. Resistividad grafito 3,5 10-5 Ωm
ozzi

Answer:

R = 0.992 Ω

Explanation:

En esta pregunta, dada la información que contiene, debemos calcular la resistencia de la varilla de grafito.

Matemáticamente,

Resistencia = (resistividad * longitud) / Área De la pregunta;

Resistividad = 3,5 * 10 ^ -5 Ωm

longitud = 170 cm = 1,7 m

Área = 60 mm ^ 2 = 60/1000000 = 6 * 10 ^ -5 m ^ 2

Conectando estos valores a la ecuación anterior, tenemos;

Resistencia = (3.5 * 10 ^ -5 * 1.7) / (6 * 10 ^ -5) =

(3.5 * 1.7) / 6 = 0.992 Ω

3 0
2 years ago
Other questions:
  • A spherical balloon is 40 ft in diameter and surrounded by air at 60°F and 29.92 in Hg abs.(a) If the balloon is filled with hyd
    6·2 answers
  • A 25-turn circular coil of wire has diameter 1.00 m. It is placed with its axis along the direction of the Earth’s magnetic fiel
    10·1 answer
  • Titanium metal requires a photon with a minimum energy of 6.94×10−19J to emit electrons. If titanium is irradiated with light of
    10·1 answer
  • (a) Triply charged uranium-235 and uranium-238 ions are being separated in a mass spectrometer. (The much rarer uranium-235 is u
    6·1 answer
  • Calculate the minimum average power output necessary for a person to run up a 12.0 m long hillside, which is inclined at 25.0° a
    14·1 answer
  • Three wires are made of copper having circular cross sections. Wire 1 has a length l and radius r. Wire 2 has a length l and rad
    10·1 answer
  • A 1500 kg car enters a section of curved road in the horizontal plane and slows down at a uniform rate from a speed of 100 km/h
    13·1 answer
  • . A lightbulb with a resistance of 2.9 ohms is operated using a 1.5-volt battery. At what rate is
    6·2 answers
  • I need help ASAP
    10·1 answer
  • Max and Jimmy want to jump on a trampoline. Max begins jumping in a steady pattern, making small waves in the trampoline. Jimmy
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!