answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bingel [31]
2 years ago
6

A 2300 kg truck has put its front bumper against the rear bumper of a 2500 kg suv to give it a push. with the engine at full pow

er and good tires on good pavement, the maximum forward force on the truck is 18,000 n. you may want to review ( pages 145 - 146) . part a what is the maximum possible acceleration the truck can give the suv? express your answer to two significant figures and include the appropriate units.

Physics
2 answers:
Snowcat [4.5K]2 years ago
5 0

From the Newton’s First Law, we can see that acceleration is simply the ratio of Force over mass. In this case, mass is the sum of the mass of each car, that is:

mass = 2300 kg + 2500 kg = 4800 kg

 

So the formula is:

acceleration = Force / mass

acceleration = 18,000 N / 4800 kg

acceleration = 3.75 m/s^2

 

In 2 significant figures:

<span>acceleration = 3.8 m/s^2</span>

Furkat [3]2 years ago
3 0

The maximum possible acceleration the truck can give the SUV is about 3.8 m/s²

\texttt{ }

<h3>Further explanation</h3>

Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

\boxed {F = ma }

F = Force ( Newton )

m = Object's Mass ( kg )

a = Acceleration ( m )

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of truck = m = 2300 kg

mass of SUV = M = 2500 kg

maximum forward force = F = 18 000 N

<u>Asked:</u>

maximum possible acceleration = a = ?

<u>Solution:</u>

We will use Newton's second law of motion to solve this problem :

\Sigma F = ( m + M )a

F = ( m + M ) a

a = F \div ( m + M )

a = 18000 \div ( 2300 + 2500 )

a = 18000 \div 4800

a \approx 3.8 \texttt{ m/s}^2

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441
  • Newton's Law of Motion: brainly.com/question/10431582
  • Example of Newton's Law: brainly.com/question/498822

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Dynamics

You might be interested in
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it started sliding down the incline. The crate slows to
Anna [14]

Answer:(a)891.64 N

(b)0.7

Explanation:

Mass of crate m=100 kg

Crate slows down in s=1.5 m

initial speed u=1.77 m/s

inclination \theta =30^{\circ}

From Work-Energy Principle

Work done by all the Forces is equal to change in Kinetic Energy

W_{friction}+W_{gravity}=\frac{1}{2}mv_i^2-\frac{1}{2}mv_f^2

W_{gravity}=mg(0-h)=mgs\sin \theta

W_{gravity}=-mgs\sin \theta

W_{gravity}=-100\times 9.8\times 1.5\sin 30=-735 N

change in kinetic energy=\frac{1}{2}\times 100\times 1.77^2=156.64 J

W_{friction}=156.64+735=891.645

(b)Coefficient of sliding friction

f_r\cdot s=W_{friciton}

891.645=f_r\times 1.5

f_r=594.43 N

and f_r=\mu mg\cos \theta

\mu 100\times 9.8\times \cos 30=594.43

\mu =0.7

5 0
2 years ago
A toy rocket launcher can project a toy rocket at a speed as high as 35.0 m/s.
Anestetic [448]

Answer:

(a) 62.5 m

(b) 7.14 s

Explanation:

initial speed, u = 35 m/s

g = 9.8 m/s^2

(a) Let the rocket raises upto height h and at maximum height the speed is zero.

Use third equation of motion

v^{2}=u^{2}+2as

0^{2}=35^{2}- 2 \times 9.8 \times h

h = 62.5 m

Thus, the rocket goes upto a height of 62.5 m.

(b) Let the rocket takes time t to reach to maximum height.

By use of first equation of motion

v = u + at

0 = 35 - 9.8 t

t = 3.57 s

The total time spent by the rocket in air = 2 t = 2 x 3.57 = 7.14 second.

8 0
2 years ago
Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight. Use this co
natima [27]

Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight is given below.

Explanation:

Measure unstretched length of spring, L.  E.g. L = 0.60m.

Set mass to a convenient value (e.g. m = 0.5kg).

Hang mass.

Measure new spring length, L'. E.g. L' = 0.70m.

Calculate extension: e = L' - L = 0.70 – 0.60 = 0.10m

Use mg = ke (in equilibrium weight = tension)

k = mg/e

Don't know what value you are using for example.  Suppose it is 10N/kg (same thing as 10m/s²).

k = 0.5*10/0.10 = 50 N/m

Repeat for a few different masses.  (L always stays the same.)

Take the average of your k values.

5 0
1 year ago
Read 2 more answers
An object at rest is suddenly broken apart into two fragments by an explosion one fragment acquires twice the kinetic energy of
satela [25.4K]
<span>First, we use the kinetic energy equation to create a formula: Ka = 2Kb 1/2(ma*Va^2) = 2(1/2(mb*Vb^2)) The 1/2 of the right gets cancelled by the 2 left of the bracket so: 1/2(ma*Va^2) = mb*Vb^2 (1) By the definiton of momentum we can say: ma*Va = mb*Vb And with some algebra: Vb = (ma*Va)/mb (2) Substituting (2) into (1), we have: 1/2(ma*Va^2) = mb*((ma*Va)/mb)^2 Then: 1/2(ma*Va^2) = mb*(ma^2*Va^2)/mb^2 We cancel the Va^2 in both sides and cancel the mb at the numerator, leving the denominator of the right side with exponent 1: 1/2(ma) = (ma^2)/mb Cancel the ma of the left, leaving the right one with exponent 1: 1/2 = ma/mb And finally we have that: mb/2 = ma mb = 2ma</span>
8 0
2 years ago
A player kicks a football into the air. It slows to a stop at its highest point in the air before falling to the ground. Which s
vivado [14]

Answer:

The ball slows down in the air due to an unbalanced force

Explanation:

When player kicks the ball, there are mainly two foces acting on this object: the force made by the player and the opposite force of gravity (which acts with a direction always to the centre of the Earth)

The force applied by the player will be decreasing, while the force of gravity is always constant, this will make that both forces will unbalance, making the football´s speed slow down

8 0
2 years ago
Read 2 more answers
Other questions:
  • Two friends of different masses are on the playground. They are playing on the seesaw and are able to balance it even though the
    11·1 answer
  • Find the angle (above the horizontal) at which a projectile achieves its maximum range, if y=y0.
    11·1 answer
  • Explain how cognitive psychologists combine traditional conditioning models with cognitive processes.
    6·2 answers
  • Three disks are spinning independently on the same axle without friction. Their respective rotational inertias and angular speed
    10·2 answers
  • A 125-g metal block at a temperature of 93.2 °C was immersed in 100. g of water at 18.3 °C. Given the specific heat of the metal
    14·1 answer
  • Use scientific (exponential) notation to express the following quantities in terms of the SI base units in
    6·1 answer
  • Certain meteorites have been examined and found to carry samples of which molecules?
    14·1 answer
  • If period of the pendulum in preceding sample problem were 24s how tall would the tower be ?
    8·2 answers
  • Does a fish appear closer or farther from a person wearing swim goggles with an air pocket in front of their eyes than the fish
    8·1 answer
  • The solar energy strikes the deck at the rate of 1400 W on every square metre.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!