answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
2 years ago
9

Which of the following will exert a force on a magnet? another magnet a nearby piece of glass a nearby piece of plastic a nearby

electric current
Physics
2 answers:
spin [16.1K]2 years ago
8 0
The magnet will attract or repell the other magnet so magnet is one answer

the glass obviously doesn't exert a force

the ellectric current makes the ellectrons and protons, in the current, allign so that they attract or repell the other magnet
gladu [14]2 years ago
4 0
The nearby magnet and the electric current both will.
You might be interested in
A thin ring of radius 73 cm carries a positive charge of 610 nC uniformly distributed over it. A point charge q is placed at the
kow [346]

Answer:

q = - 93.334 nC

Explanation:

GIVEN DATA:

Radius of ring  73 cm

charge on ring 610 nC

ELECTRIC FIELD p FROM CENTRE IS AT 70 CM

E  =  2000 N/C

Electric field due tor ring is guiven as

E = \frac{KQx}{[x^2+ R^2]^{3/2}}

E = \frac{9\time 10^9 \times 610\times 10^[-9} 0.70}{(0.70^2 + 0.73^2)^{3/2}}

E1 = 3714.672 N/C

electric field due to point charge q

E  =\frac[kq}{x^2}

E = \frac{9\times 10^9 \times q}{0.70^2}

E2 = 1.837\times 10^{10}\times q

now the eelctric charge at point P is

E = E1 + E22000 =  3714.672 + 1.837\times 10[10} \times q

solving for q

q = - 93.334 nC

7 0
2 years ago
Suppose you need 7.0m of Grade 70 tow chain, which has a diameter of /38" and weighs 2.16/kgm, to tow a car. How would you calcu
Zina [86]

Answer:

<em>M = l × m</em>

Explanation:

M = total mass

l = total length

m = mass per unit length

Note: The unit of weight in the question i.e. /kgm is wrong. The correct unit is kg/m.

4 0
2 years ago
A 3.0-kg mass and a 5.0-kg mass hang vertically at the opposite ends of a very light rope that goes over an ideal pulley. If the
AleksAgata [21]

Answer:

acceleration = 2.4525‬ m/s²

Explanation:

Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²

Tension in the rope = T

Sol: m2 > m1

i) for downward motion of m2:

m2 a = m2 g - T

5 a = 5 × 9.81 m/s² - T  

⇒ T = 49.05‬ m/s² - 5 a     Eqn (a)‬

ii) for upward motion of m1

m a = T - m1 g

3 a = T - 3 × 9.8 m/s²

⇒ T =  3 a + 29.43‬ m/s²   Eqn (b)

Equating Eqn (a) and(b)

49.05‬ m/s² - 5 a = T =  3 a + 29.43‬ m/s²

49.05‬ m/s² - 29.43‬ m/s² = 3 a + 5 a

19.62 m/s² = 8 a

⇒ a = 2.4525‬ m/s²

5 0
2 years ago
Charge is placed on two conducting spheres that are very far apart and connected by a long thin wire. The radius of the smaller
kobusy [5.1K]

Answer:

σ₁ = 3.167 * 10^{-6} C/m²

σ₂ = 7.6 * 10 ^{-6}  C/m²

Explanation:

The given data :-

i) The radius of smaller sphere ( r ) = 5 cm.

ii) The radius of larger sphere ( R ) = 12 cm.

iii) The electric field at of larger sphere  ( E₁ ) = 358 kV/m. = 358 * 1000 v/m

E_{1} = (\frac{1}{4\pi\epsilon  }) (\frac{Q_{1} }{R^{2} } )

358000 = 9 * 10^{9 } *\frac{Q_{1} }{0.12^{2} }

Q₁ = 572.8 * 10^{-9} C

Since the field inside a conductor is zero, therefore electric potential ( V ) is constant.

V = constant

∴\frac{Q_{1} }{R} = \frac{Q_{2} }{r}

Q_{2}  = \frac{r}{R} *Q_{1}

Q_{2} = \frac{5}{12} *572.8*10^{-9}   = 238.666 *10^{-9} C

Surface charge density ( σ₁ ) for large sphere.

Area ( A₁ )  = 4 * π * R²  = 4 * 3.14 * 0.12 = 0.180864 m².

σ₁  = \frac{Q_{1} }{A_{1} } = \frac{572.8 *10^{-9} }{0.180864} = 3.167 * 10^{-6}  C/m².

Surface charge density ( σ₂ ) for smaller sphere.

Area ( A₂ )  = 4 * π * r²  = 4 * 3.14 * 0.05²  =0.0314 m².

σ₂ =\frac{Q_{2} }{A_{2} } = \frac{238.66 *10^{-9} }{0.0314} = 7.6 * 10 ^{-6} C/m²

8 0
2 years ago
A space vehicle deploys its re–entry parachute when it's traveling at a vertical velocity of –150 meters/second (negative becaus
dexar [7]

Answer:

a=5m/s^2

Explanation:

Aceleration is a change on the velocity of the object in a given time.

For this case: the initial velocity is

v_{1}=150m/s

and the final velocity is :

v_{2}=0 m/s

so, the change in velocity is:

\Delta v =v_{2}-v_{1}=0m/s - (-150m/s) =  150 m/s

and the change in time , according to the problem:

\Delta t=30s

So, the aceleration is:

a=\frac{\Delta v}{\Delta t} = \frac{150m/s}{30s} = 5m/s^2

6 0
2 years ago
Other questions:
  • Which part of a scientific argument must be supported by valid data? claim evidence reasoning theory
    8·2 answers
  • When you stand by the side of a pool someone swimming underwater appears to be in a different location than she really is the ef
    10·2 answers
  • A metal ball with diameter of a half a centimeter and hanging from an insulating thread is charged up with 1010 excess electrons
    10·1 answer
  • How did Newton use creativity and logic in his approach to investigating light?
    15·2 answers
  • What type of weather modification involves the use of large fans to mix surface air with air aloft?
    12·1 answer
  • As you build circuits, you will alter voltage, which is the variable. You will measure how changing the voltage affects the curr
    6·2 answers
  • If the activation energy for a given compound is found to be 103 kJ/mol, with a frequency factor of 4.0 × 1013 s-1, what is the
    10·2 answers
  • Which optical device can focus light to a point through reflection?
    14·1 answer
  • Four kilograms of carbon monoxide (CO) is contained in a rigid tank with a volume of 1 m^3. The tank is fitted with a paddle whe
    11·1 answer
  • A child of mass m is at the edge of a merry-go-round of diameter d. When the merry-go-round is rotating with angular acceleratio
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!