Answer:
20 cm
Explanation:
Te electric potential enery U = kq₁q₂/r were q₁ = 5 nC = 5 × 10⁻⁹ C and q₂ = -2 nC = -2 × 10⁻⁹ C and r = √(x - 2)² + (0 - 0)² +(0 - 0)² = x - 2. U = -0.5 µJ = -0.5 × 10⁻⁶ J, k = 9 × 10⁹ Nm²/C².
So r = kq₁q₂/U
x - 2 = kq₁q₂/U
x = 0.02 + kq₁q₂/U m
x = 0.02 + 9 × 10⁹ Nm²/C² × 5 × 10⁻⁹ C × -2 × 10⁻⁹ C/-0.5 × 10⁻⁶ J
x = 0.02 - 90 × 10⁻⁹ Nm²/-0.5 × 10⁻⁶ J
x = 0.02 + 0.18 = 0.2 m = 20 cm
If you did this then it could lead to cheating or someone else getting hurt.
Answer:
solved
Explanation:
a) F_net = (F2 - F3)i - F1 j
b) |Fnet| = sqrt( (F2 - F3)^2 + F1^2)
= sqrt( (9- 5)^2 + 1^2)
= 4.123 N
c) θ = tan^-1( (Fnet_y/Fnet_x)
= tan^-1( -1/(9-5) )
= -14.036°
Answer:
|v| = 8.7 cm/s
Explanation:
given:
mass m = 4 kg
spring constant k = 1 N/cm = 100 N/m
at time t = 0:
amplitude A = 0.02m
unknown: velocity v at position y = 0.01 m

1. Finding Ф from the initial conditions:

2. Finding time t at position y = 1 cm:

3. Find velocity v at time t from equation 2:

Answer:
35mA
Explanation:
Hello!
To solve this problem we must use the following steps
1. Find the electrical resistance of the metal rod using the following equation

WHERE
α=
metal rod resistivity=2x10^-4 Ωm
l=leght=2m
A= Cross-sectional area

solving

2. Now we model the system as a circuit with parallel resistors, where we will call 1 the metal rod and 2 the man(see attached image)
3.we know that the sum of the currents in 1 and 2 must be equal to 5A, by the law of conservation of energy
I1+I2=5
4.as the voltage on both nodes is the same we can use ohm's law in resitance 1 and 2 (V=IR)
V1=V2
(0.14I1)=2000(i2)
solving for i1
I1=14285.7i2
5.Now we use the equation found in step 3
14285.7i2+i2=5
