Answer:

Explanation:
Apply Faraday's Newmann Lenz law to determine the induced emf in the loop:

where:
variation of the magnetic flux
is the variation of time
#The magnetic flux through the coil is expressed as:

Where:
N- number of circular loops
A-is the Area of each loop(
)
B-is the magnetic strength of the field.
- is the angle between the direction of the magnetic field and the normal to the area of the coil.

=0.0250T/s is given as rate at which the magnetic field increases.
#Substitute in the emf equation:

Hence, the induced emf is 
The sound is increased because sound waves are in fact mech. waves which means the that they can't travel through empty space and thus need a medium to travel through
Answer:
the internal energy of the gas is 433089.52 J
Explanation:
let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.
the internal energy of an ideal gas is given by:
Ein = 3/2×n×R×T
= 3/2×(5.3)×(8.31451)×(24 + 273)
= 433089.52 J
Therefore, the internal energy of this gas is 433089.52 J.
Answer:
(A) As it moves farther and farther from Q, its speed will keep increasing.
Explanation:
When a positive charge Q is fixed on a horizontal frictionless tabletop and a second charge q is released near to it then according to the Coulombs law the force acting on it decreases with the square of the distance between them.
Mathematically:

where:
r = distance between the charges
permittivity of free space
By the Newtons' second law of motion if the we know that the acceleration is directly proportional to the force applied. So as the distance between the charges increases the its acceleration also decreases therefore now the charge feels less acceleration but still continues to accelerate with a fading magnitude.
When you have a warm shower, you create steam. So when the warm steam flows in the air and starts to be in contact with a cold surface, it condenses causing a mist to form on the cold surface. The heated mirror is warm so, when, the steam is in contact with the mirror condensation is prevented. Therefore, the mirror stays clear.