Answer:
Following are the answer to this question:
Explanation:
In option (a):
- The principle of Snells informs us that as light travels from the less dense medium to a denser layer, like water to air or a thinner layer of the air to the thicker ones, it bent to usual — an abstract feature that would be on the surface of all objects. Mostly, on the contrary, glow shifts from a denser with a less dense medium. This angle between both the usual and the light conditions rays is referred to as the refractive angle.
- Throughout in scenario, the light from its stars in the upper orbit, the surface area of both the Earth tends to increase because as light flows from the outer atmosphere towards the Earth, it defined above, to a lesser angle.
In option (b):
- Rays of light, that go directly down wouldn't bend, whilst also sun source which joins the upper orbit was reflected light from either a thicker distance and flex to the usual, following roughly the direction of the curve of the earth.
- Throughout the zenith specific position earlier in this thread, astronomical bodies appear throughout the right position while those close to a horizon seem to have been brightest than any of those close to the sky, and please find the attachment of the diagram.
Answer:
Combustibility is a measure of how easily a substance bursts into flame, through fire or combustion. This is an important property to consider when a substance is used for construction or is being stored. It is also important in processes that produce combustible substances as a by-product.
Explanation:
Answer:
a. 0.000002 m
b. 0.00000182 m
Explanation:
36 cm = 0.36 m
15 cm = 0.15 m
a) We can start by calculating the air-water pressure of the bucket submerged 20m below the water surface:

Suppose air is ideal gas, then if the temperature stays the same, the product of its pressure and volume stays the same

Where P1 = 1.105 Pa is the atmospheric pressure, V_1 is the air volume in the bucket on the suface:

As the pressure increases, the air inside the bucket shrinks. But the crossection area stays constant, so only h, the height of air, decreases:


b) If the temperatures changes, we can still reuse the ideal gas equation above:


Answer:
The gravitational potential energy equals the work needed to lift the object.
Explanation:
here we know that

work done is given as

Potential energy is given as

force due to gravity is given as

now here if we plug in the value of distance and force in the formula of work done then we will have

so here we got

so we can concluded that
The gravitational potential energy equals the work needed to lift the object.