the answer could be (very basic) since options arent given
Answer
given,
mass of the person, m = 50 Kg
length of scaffold = 6 m
mass of scaffold, M= 70 Kg
distance of person standing from one end = 1.5 m
Tension in the vertical rope = ?
now equating all the vertical forces acting in the system.
T₁ + T₂ = m g + M g
T₁ + T₂ = 50 x 9.8 + 70 x 9.8
T₁ + T₂ = 1176...........(1)
system is equilibrium so, the moment along the system will also be zero.
taking moment about rope with tension T₂.
now,
T₁ x 6 - mg x (6-1.5) - M g x 3 = 0
'3 m' is used because the weight of the scaffold pass through center of gravity.
6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3
6 T₁ = 4263
T₁ = 710.5 N
from equation (1)
T₂ = 1176 - 710.5
T₂ = 465.5 N
hence, T₁ = 710.5 N and T₂ = 465.5 N
Answer:
d) 12 V
Explanation:
Due to the symmetry of the problem, the potential (relative to infinity) at the midpoint of the square, is the same for all charges, provided they be of the same magnitude and sign, and be located at one of the corners of the square.
We can apply the superposition principle (as the potential is linear with the charge) and calculating the total potential due to the 4 charges, just adding the potential due to any of them:
V = V(Q₁) + V(Q₂) +V(Q₃) + V(Q₄) = 4* 3.0 V = 12. 0 V
Answer:
a)693.821N/m
b)17.5g
Explanation:
We the Period T we can find the constant k,
That is

squaring on both sides,

where,
M=hanging mass, m = spring mass,
k =spring constant
T =time period
a) So for the equation we can compare, that is,

the hanging mass M is x here, so comparing the equation we know that

b) In order to find the mass of the spring we make similar process, so comparing,
