Answer:

Step-by-step explanation:
we know that
The equation of the line into slope intercept form is equal to

where
m is the slope
b is the y-coordinate of the y-intercept
In this problem we have


Substitute

We have to determine which value is equivalent to | f ( i ) | if the function is: f ( x ) = 1 - x. We know that for the complex number: z = a + b i , the absolute value is: | z | = sqrt( a^2 + b^2 ). In this case: | f ( i )| = | 1 - i |. So: a = 1, b = - 1. | f ( i ) | = sqrt ( 1^2 + ( - 1 )^2) = sqrt ( 1 + 1 ) = sqrt ( 2 ). Answer: <span>C. sqrt( 2 )</span>
<span>The nearest perfect square that is less than 22 is 16, whose square root is 4.
</span><span>Add the square root from step 1 to 3/4 to get 4.75.
</span>Calculate the quantity one-half times the square of divided by the value found in step 2, or 4.75. (1/2 * (3/4)^2) <span>÷ 4.75 = 0.06.
</span>
Subtract the value found in step 3 from the value found in step 2, or 4.75.
The approximate value of <span>√22 is 4.69.</span>
Answer:
In the long run cost of the refrigerator g(x) will be cheaper.
Step-by-step explanation:
The average annual cost for owning two different refrigerators for x years is given by two functions
f(x) = 
= 
and g(x) = 
= 
If we equate these functions f(x) and g(x), value of x (time in years) will be the time by which the cost of the refrigerators will be equal.
At x = 1 year
f(1) = 850 + 62 = $912
g(1) = 1004 + 51 = $1055
So initially f(x) will be cheaper.
For f(x) = g(x)
= 


x = 
Now f(15) = 56.67 + 62 = $118.67
and g(x) = 66.93 + 51 = $117.93
So g(x) will be cheaper than f(x) after 14 years.
This tells below 14 years f(x) will be less g(x) but after 14 years cost g(x) will be cheaper than f(x).