answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ss7ja [257]
2 years ago
14

Identify the effects of electrical forces and the role electrical forces play in the formation of ionic bonds by completing the

sentences. like charges and opposite charges . ionic bonds are formed when ions each other
Chemistry
2 answers:
uranmaximum [27]2 years ago
8 0

Answer:

1. repel

2. attract

3. attract

Explanation:

I took it on E2020.

Guest
1 year ago
ay thxs
uysha [10]2 years ago
7 0

Hey Queens!

1) repel

2) attract

3) attract

Guest
1 year ago
you a queen yo self GO GIRL
You might be interested in
For scuba dives below 150 ft, helium is often used to replace nitrogen in the scuba tank. If 15.2 g of He(g) and 30.6 g of O2(g)
abruzzese [7]

Answer:

see explanation below

Explanation:

To do this exercise, we need to use the following expression:

P = nRT/V

This is the equation for an ideal gas. so, we have the temperature of 22 °C, R is the gas constant which is 0.082 L atm / mol K, V is the volume in this case, 5 L, and n is the moles, which we do not have, but we can calculate it.

For the case of the oxygen (AW = 16 g/mol):

n = 30.6 / 32 = 0.956 moles

For the case of helium (AW = 4 g/mol)_

n = 15.2 / 4 = 3.8 moles

Now that we have the moles, let's calculate the pressures:

P1 = 0.956 * 0.082 * 295 / 5

P1 = 4.63 atm

P2 = 3.8 * 0.082 * 295 / 5

P2 = 18.38 atm

Finally the total pressure:

Pt = 4.63 + 18.38

Pt = 23.01 atm

7 0
2 years ago
12. The vapor pressure of water at 90°C is 0.692 atm. What is the vapor pressure (in atm) of a solution made by dissolving 3.68
luda_lava [24]

Answer : The vapor pressure (in atm) of a solution is, 0.679 atm

Explanation : Given,

Mass of H_2O = 1.00 kg = 1000 g

Moles of CsF = 3.68 mole

Molar mass of H_2O = 18 g/mole

Vapor pressure of water = 0.692 atm

First we have to calculate the moles of H_2O.

\text{Moles of }H_2O=\frac{\text{Mass of }H_2O}{\text{Molar mass of }H_2O}=\frac{1000g}{18g/mole}=55.55mole

Now we have to calculate the mole fraction of H_2O

\text{Mole fraction of }H_2O=\frac{\text{Moles of }H_2O}{\text{Moles of }H_2O+\text{Moles of }CsF}=\frac{55.55}{55.55+3.68}=0.938

Now we have to partial pressure of solution.

According to the Raoult's law,

P_{Solution}=X_{H_2O}\times P^o_{H_2O}

where,

P_{Solution} = vapor pressure of solution

P^o_{H_2O} = vapor pressure of water = 0.692 atm

X_{H_2O} = mole fraction of water = 0.938

P_{Solution}=X_{H_2O}\times P^o_{H_2O}

P_{Solution}=0.938\times 0.692atm

P_{Solution}=0.649atm

Therefore, the vapor pressure (in atm) of a solution is, 0.679 atm

5 0
2 years ago
In acidic solution, the breakdown of sucrose into glucose and fructose has this rate law: rate = k[H+][sucrose].
Karo-lina-s [1.5K]

Answer:

a)If concentration of [Sucrose] is changed to 2.5 M than rate will be increased by the factor of 2.5.

b)If concentration of [Sucrose] is changed to 0.5 M than rate will be increased by the factor of 0.5.

c)If concentration of  [H^+] is changed to 0.0001 M than rate will be increased by the factor of 0.01.

d) If concentration when [sucrose] and[H^+] both are changed to 0.1 M than rate will be increased by the factor of 1.

Explanation:

Sucrose +  H^+\rightarrow  fructose+ glucose

The rate law of the reaction is given as:

R=k[H^+][sucrose]

[H^+]=0.01M

[sucrose]= 1.0 M

R=k[0.01M][1.0 M]..[1]

a)

The rate of the reaction when [Sucrose] is changed to 2.5 M = R'

R'=[0.01 M][2.5 M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.01 M][2.5 M]}{k[0.01M][1.0 M]}

R'=2.5\times R

If concentration of [Sucrose] is changed to 2.5 M than rate will be increased by the factor of 2.5.

b)

The rate of the reaction when [Sucrose] is changed to 0.5 M = R'

R'=[0.01 M][0.5 M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.01 M][0.5 M]}{k[0.01M][1.0 M]}

R'=2.5\times R

If concentration of [Sucrose] is changed to 0.5 M than rate will be increased by the factor of 0.5.

c)

The rate of the reaction when [H^+] is changed to 0.001 M = R'

R'=[0.0001 M][1.0 M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.0001 M][1.0M]}{k[0.01M][1.0 M]}

R'=0.01\times R

If concentration of  [H^+] is changed to 0.0001 M than rate will be increased by the factor of 0.01.

d)

The rate of the reaction when [sucrose] and[H^+] both are changed to 0.1 M = R'

R'=[0.1M][0.1M]..[2]

[2] ÷ [1]

\frac{R'}{R}=\frac{[0.1M][0.1M]}{k[0.01M][1.0 M]}

R'=1\times R

If concentration when [sucrose] and[H^+] both are changed to 0.1 M than rate will be increased by the factor of 1.

5 0
2 years ago
The chemical equation, Cr + Fe(NO3)2 → Fe + Cr(NO3)3, is an example of which type of reaction?
Angelina_Jolie [31]

Answer:

Redox type

Explanation:

The reaction is:

2Cr +  3Fe(NO₃)₂ → 2Fe + 2Cr(NO₃)₃

2 moles of chromium can react to 3 moles of iron (II) nitrate in order to produce 2 moles of iron and 2 moles of chromium nitrate.

If we see oxidation state, we see that chromium changes from 0 to +3

Iron changed the oxidation state from +2 to 0

Remember that elements at ground state has 0, as oxidation state.

Iron is being reduced while chromium is oxidized. Then, the half reactions are:

Fe²⁺  +  2e⁻ ⇄  Fe    (Reduction)

Cr ⇄ Cr³⁺  +  3e⁻    (Oxidation)

When an element is being  reduced, while another is being oxidized, we are in prescence of a redox reaction.

8 0
2 years ago
Phosphorous acid, h3po3(aq), is a diprotic oxyacid that is an important compound in industry and agriculture. calculate the ph f
Varvara68 [4.7K]

Answer:

Explanation:

(a)

Before the addition of KOH :-

Given pKa1 of H3PO3 = 1.30

we know , pKa1 = - log10Ka1

Ka1 = 10-pKa1

Ka1 = 10-1.30

Ka1 = 0.0501

similarly pKa2 = 6.70 ,therefore Ka2 = 1.99 x 10-7

because Ka1 >> Ka2 , therefore pH of diprotic acid i.e H3PO3 can be calculated from first dissociation only .

ICE table is :-

H3PO3 (aq) <-------------> H+ (aq) + H2PO3-(aq)

I 2.4 M 0 M 0 M

C - x + x + x

E (2.4 - x )M x M x M

x = degree of dissociation

Now expression of Ka1 is :

Ka1 = [ H+ ] [ H2PO3-] / [ H3PO3]

0.0501 = x2 / 2.4 - x

on solving for x by using quadratic formula , we have

x = 0.32

Now [ H+ ] = [ H2PO3-] = 0.32 M

pH = - log [H+]

pH = - log 0.32

pH = - ( - 0.495)

pH = 0.495

Hence pH before the addition of KOH = 0.495

(b)

After the addition of 25.0 mL of 2.4 M KOH :-

Number of moles of KOH = 2.4 M x 0.025 L = 0.06 mol

Number of moles of H3PO3 = 2.4 M x 0.050 L = 0.12 mol

Now 0.06 moles of KOH is equal to the half of the moles required for the first equivalent point . therefore pH at this point is equal to pKa1 .

Hence pH = 1.30 M

(c)

After the addition of 50.0 mL of 2.4 M KOH :-

Number of moles of KOH = 2.4 M x 0.050 L = 0.12 mol

Number of moles of H3PO3 = 2.4 M x 0.050 L = 0.12 mol

because Number of moles of H3PO4 = Number of moles of KOH

therefore , this point is the first equivalence point

and pH = pKa1 + pKa2 / 2

pH = 1.30 + 6.70 / 2

pH = 4.00

Hence pH = 4.00

(d)

After the addition of 75.0 mL of 2.4 M KOH :-

Number of moles of KOH = 2.4 M x 0.075 L = 0.18 mol

Number of moles of H3PO3 = 2.4 M x 0.050 L = 0.12 mol

This is the half way of the second equivalence point , therefore pH is equal to pKa2 .

Hence pH = 6.70

5 0
2 years ago
Other questions:
  • The wavelength of light is 310. nm; calculate the frequency.
    6·2 answers
  • Sodium carbonate (Na2CO3) reacts with acetic acid (CH3COOH) to form sodium acetate (NaCH3COO), carbon dioxide (CO2), and water (
    14·2 answers
  • Which of these facts best illustrates why regulation of alcohol consumption is necessary
    10·1 answer
  • What does X represent in the formula for the compound XCl4?
    10·1 answer
  • Consider the reaction below. 2H2O 2H2 + O2 How many moles of hydrogen are produced when 6.28 mol of oxygen form?
    7·1 answer
  • The graph shows a sample of gas when it is hot, cold, and at room temperature.
    15·1 answer
  • Molecules of SiO2 would have a mass of 12.40 g
    10·1 answer
  • In a certain compound of iron and oxygen, FexOy, it is found that a sample of this compound weighing 6.285 g contains 4.396 g of
    5·1 answer
  • Give the coordination number, the charge of the central metal ion, and select the correct name in each coordination compound: A.
    12·1 answer
  • When 13.6 g of calcium chloride, CaCl2, was dissolved in 100.0 mL of water in a coffee cup calorimeter, the temperature rose fro
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!