answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naya [18.7K]
2 years ago
11

Rita throws a ball straight up into the air and catches it at the same position from which she threw it. The ball has 18 J of me

chanical energy when it leaves her hand.
If no energy is lost due to friction, which statements about the energy of the ball are true? Check all that apply.

The potential energy at the top of the ball’s motion is 18 J.
The kinetic energy is less when the ball is thrown than when it is caught.
The kinetic energy increases as the potential energy decreases.
The kinetic energy decreases as the potential energy increases.
The total mechanical energy of the ball stays constant.
The mechanical energy decreases as the ball moves up and increases as the ball comes down.
Physics
2 answers:
Zina [86]2 years ago
7 0
The 1st,3rd,4th, and 5th ones are the correct answers
Mashutka [201]2 years ago
5 0
The correct statements are statements 1,3,4, & 5
You might be interested in
Sarah is 14 years old and skips school twice a week without any written explanation. What can she be charged with?
harina [27]

Answer:

Too many people are unaware or indifferent to that.” Fines can cost up to $500 per truancy, due within 30 days unless a judge gives an extension. For many students and families, it's another debt they can't pay. And if fines aren't paid, they can convert into an arrest warrant when a student turns 17.

Explanation:

5 0
2 years ago
You have negotiated with the Omicronians for a base on the planet Omicron Persei 7. The architects working with you to plan the
steposvetlana [31]

Answer:

5.724 meters / second^2

Explanation:

We are given two pieces of information, 5.24 flurg = 1 meter, 1 grom = 0.493 second. If that is so, we can say that there are two possible conversion units,  5.25 flurg / meter, and 0.493 second / grom.

_____

We want to convert 7.29 flurg / grom^2 ( I believe? ) to the units meters / second^2. But, let's break this down into bits. It would be convenient to first convert 7.29 flurg / grom^2 to the units meters / grom^2, by dividing the conversion factors as to cancel out the appropriate things, which we will go into detail on a bit later ( using the first conversion factor ). Respectively we can convert meters / grom^2 to meters / grom * s, canceling out the flurg ( through the second conversion factor ). And now we would need to get rid of the grom, dividing similarly.

_____

( 1 ) ( flurg / grom^2 ) / ( flurg / meters  ) - first conversion unit

= flurg / grom^2 * meters /flurg

= ( meters * flurg ) / ( grom^2 * flurg )  

= meters /grom^2,

7.29 flurg / grom^2 / 5.24 flurg / meter = ( About ) 1.39 meter / grom^2

( 2 ) ( meter / grom^2 ) / ( second / grom  ) - second conversion unit

= meter / grom^2 * grom / second

= ( meter * grom ) / ( grom^2 * second )

= meter / ( grom * second ),

( 1.39 meter / grom^2 ) / 0.493 second / grom = ( About ) 2.82195 meter /  grom * second

( 3 ) ( 2.82195 meter / ( grom * second ) ) / 0.493 second / grom = 5.724 meter / second^2

( And thus, the value of gOP7 in the units the architects will use should be about 5.724 meters / second^2 )

8 0
2 years ago
If 300. mL of water are poured into the measuring cup, the volume reading is 10.1 oz . This indicates that 300. mL and 10.1 oz a
tigry1 [53]

Answer:

Milliliters to Ounces Conversions

some results rounded

mL    - fl oz

200.00 6.7628

200.01 6.7631

200.02 6.7635

200.03 6.7638

200.04 6.7642

200.05 6.7645

200.06 6.7648

200.07 6.7652

200.08 6.7655

200.09 6.7658

200.10 6.7662

200.11 6.7665

200.12 6.7669

200.13 6.7672

200.14 6.7675

200.15 6.7679

200.16 6.7682

200.17 6.7686

200.18 6.7689

200.19 6.7692

200.20 6.7696

200.21 6.7699

200.22 6.7702

200.23 6.7706

200.24 6.7709

mL fl oz

200.25 6.7713

200.26 6.7716

200.27 6.7719

200.28 6.7723

200.29 6.7726

200.30 6.7729

200.31 6.7733

200.32 6.7736

200.33 6.7740

200.34 6.7743

200.35 6.7746

200.36 6.7750

200.37 6.7753

200.38 6.7757

200.39 6.7760

200.40 6.7763

200.41 6.7767

200.42 6.7770

200.43 6.7773

200.44 6.7777

200.45 6.7780

200.46 6.7784

200.47 6.7787

200.48 6.7790

200.49 6.7794

mL fl oz

200.50 6.7797

200.51 6.7800

200.52 6.7804

200.53 6.7807

200.54 6.7811

200.55 6.7814

200.56 6.7817

200.57 6.7821

200.58 6.7824

200.59 6.7828

200.60 6.7831

200.61 6.7834

200.62 6.7838

200.63 6.7841

200.64 6.7844

200.65 6.7848

200.66 6.7851

200.67 6.7855

200.68 6.7858

200.69 6.7861

200.70 6.7865

200.71 6.7868

200.72 6.7872

200.73 6.7875

200.74 6.7878

mL fl oz

200.75 6.7882

200.76 6.7885

200.77 6.7888

200.78 6.7892

200.79 6.7895

200.80 6.7899

200.81 6.7902

200.82 6.7905

200.83 6.7909

200.84 6.7912

200.85 6.7915

200.86 6.7919

200.87 6.7922

200.88 6.7926

200.89 6.7929

200.90 6.7932

200.91 6.7936

200.92 6.7939

200.93 6.7943

200.94 6.7946

200.95 6.7949

200.96 6.7953

200.97 6.7956

200.98 6.7959

200.99 6.7963

Explanation:

5 0
2 years ago
Read 2 more answers
A 1.0-kg ball has a velocity of 12 m/s downward just before it strikes the ground and bounces up with a velocity of 12 m/s upwar
Nezavi [6.7K]

Answer:

The change in momentum of the ball is 24 kg-m/s  

Explanation:

It is given that,

Mass of the ball, m = 1 kg

Initial velocity of the ball, u = -12 m/s (in downwards)

Final velocity of the ball, v = +12 m/s (in upward)

We need to find the change in momentum of the ball.

Initial momentum of the ball, p_i=mu=1\ kg\times (-12\ m/s)=-12\ kg-m/s

Final momentum of the ball, p_f=mv=1\ kg\times (12\ m/s)=12\ kg-m/s

Change in momentum of the ball, \Delta p=p_f-p_i

\Delta p=12-(-12)=24\ kg-m/s

So, the change in momentum of the ball is 24 kg-m/s. Hence, this is the required solution.

3 0
2 years ago
We can learn a lot about the properties of a star by studying its spectrum. All of the followingstatements are true except one.
Kisachek [45]

Answer:

B. The total amount of light in the spectrum tells us the star’s radius.

Explanation:

A.

The effective temperature of a star can be determined by means of its spectrum¹ and Wien's displacement law.                    

Since stars behave in a local way as a blackbody, it will take the wavelength at which is the peak of emission greater in the continuum (see the image below).

Then, the maximum peak of emission (\lambda_{max}) will be replaced in the next equation of the Wien's displacement law:

T = \frac{2.898x10^{-3} m. K}{\lambda max}  (1)

Where T is the effective temperature of the star.

Bodies that are hot enough emits light as consequence of its temperature. For example, a iron bar in contact with fire will start to change colors as the temperature increase, until it gets to a blue color, which its know as Wien's displacement law. Which establishes that the peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase.

The same scenario described above can be found in the stars, a star whit higher temperature will have a blue color and one with lower temperature, a red color.

B.

Since star does not have the same size, they have different brightness, That is because the photons have a free mean path greater in a bigger radius.

So a star brightness is a consequence of its radius.

               

C.  

Spectral lines will be shifted to the blue part of the spectrum1 if the source of the observed light is moving toward the observer, or to the red part of the spectrum when it is moving away from the observer (that is known as the Doppler effect).        

By using that shift in the spectral lines, the Doppler velocity can be determined.

v = c\frac{\Delta \lambda}{\lambda_{0}}  (2)

Where \Delta \lambda is the wavelength shift, \lambda_{0} is the wavelength at rest, v is the velocity of the source and c is the speed of light.

   

D.

When a photon is absorbed by an electron in an atom of a particular element in the star photosphere, the electron will be pass to a higher state, when it comes back to the ground state, a photon will be emitted again. If the emitted photon does not go in the same direction of the incident photon an absorption line will be created in the spectrum of the star.          

This patterns of spectral lines in the spectrum of the star are compared with the patterns that are got by lamps of that element in a laboratory.

Key term:

¹Spectrum: decomposition of light in its characteristic colors (wavelengths).

3 0
1 year ago
Other questions:
  • If the blocks are released from rest, which way does the 10 kg block slide, and what is its acceleration? enter a positive value
    14·2 answers
  • A 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall. the mass is pull
    12·2 answers
  • A 1-m-long monopole car radio antenna operates in the AM frequency of 1.5 MHz. How muchcurrent is required to transmit 4 W of po
    9·1 answer
  • A baseball pitcher brings his arm forward during a pitch, rotating the forearm about the elbow. If the velocity of the ball in t
    14·1 answer
  • Determine the centripetal force upon a 40-kg child who makes 10 revolution around the cliffhanger in 29.3 seconds.the radius of
    6·1 answer
  • __________ curves help lessen the effect of the force of the forward motion on your vehicle as it enters the curve.
    12·1 answer
  • a worker climbs a ladder and does 8 J of work on a 2 N object. What is the distance they lift the object
    5·1 answer
  • A team of engineering students is testing their newly designed raft in the pool where the diving team practices.
    13·1 answer
  • Question 2 (1 point)
    7·2 answers
  • If a sound with frequency fs is produced by a source traveling along a line with speed vs. If an observer is traveling with spee
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!