answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
attashe74 [19]
2 years ago
4

Organisms that live in desert and desert-scrub biomes have developed unique adaptations that aid in their survival. The Sahara D

esert takes up ten percent of the continent of Africa, and is the largest desert in the world. The species that live in the Sahara are highly adapted to survive in the extreme conditions they live in. What morphological and physiological adaptations might be seen in the organisms that live in the Sahara Desert?
Physics
2 answers:
Julli [10]2 years ago
7 0
<span>Some morphological and physiological adaptations of organisms includes special storage organs of geophytes and other plants, deep root systems of trees in order to reach deep aquifers. Additionally, some plants survive by germinating quickly after the rains and before the summer heat these plants complete their life cycles.
</span>
Svetradugi [14.3K]2 years ago
6 0

Answer:

C. small bodies and long limbs in warm-blooded organisms, light colored fur or feathers to reflect sunlight, lack of sweat glands in many organisms, hibernation during hot months

Explanation:

You might be interested in
Julius competes in the hammer throw event. The hammer has a mass of 7.26 kg and is 1.215 m long. What is the centripetal force o
nevsk [136]
In the circular motion of the hammer, the centripetal force is given by
F=m \frac{v^2}{r}
where m is the mass of the hammer, v its tangential speed and r is the distance from the center of the motion, i.e. the length of the hammer.
Using the data of the problem, we find:
F=m \frac{v^2}{r}=(7.26 kg) \frac{(31.95 m/s)^2}{1.215 m}=6100 N
4 0
2 years ago
Read 2 more answers
A satellite that orbits Earth with a speed of v0 must be in an orbit of radius 8RE to maintain a circular orbit, where RE is the
NISA [10]

Answer:

1.024 × 10⁸ m

Explanation:

The velocity v₀ of the orbit 8RE is v₀ = 8REω where ω = angular speed.

So, ω =  v₀/8RE

For the orbit with radius R for it to maintain a circular orbit and velocity 2v₀, we have

2v₀ = Rω

substituting ω =  v₀/8RE into the equation, we have

2v₀ = v₀R/8RE

dividing both sides by v₀, we have

2v₀/v₀ = R/8RE

2 = R/8RE

So, R = 2 × 8RE

R = 16RE

substituting RE = 6.4 × 10⁶ m

R = 16RE

= 16 × 6.4 × 10⁶ m

= 102.4 × 10⁶ m

= 1.024 × 10⁸ m

8 0
2 years ago
Use the momentum equation for photons found in this week's notes, the wavelength you found in #3, and Plank’s constant (6.63E-34
Nostrana [21]
To help you I need to assume a wavelength and then calculate the momentum.

The momentum equation for photons is:

p = h / λ , this is the division of Plank's constant by the wavelength.

Assuming λ = 656 nm = 656 * 10 ^ - 9 m, which is the wavelength calcuated in a previous problem, you get:

p = (6.63 * 10 ^-34 ) / (656 * 10 ^ -9) kg * m/s

p = 1.01067 * 10^ - 27 kg*m/s which  must be rounded to three significant figures.

With that, p = 1.01 * 10 ^ -27 kg*m/s

The answers are rounded to only 2 significan figures, so our number rounded to 2 significan figures is 1.0 * 10 ^ - 27 kg*m/s

So, assuming the wavelength λ = 656 nm, the answer is the first option: 1.0*10^-27 kg*m/s.
7 0
2 years ago
Read 2 more answers
In a movie, Tarzan evades his captors by hiding under water for many minutes while breathing through a long, thin reed. Assume t
gladu [14]

Answer: 0.98m

Explanation:

P = -74 mm Hg = 9605 Pa = 9709N/m^2

= 9605 kg m/s^2/m^2

density of water: rho = 1 g/cc = 1 (10^-3 kg)/(10^-2 m)^-3 = 1000 kg/m^3

Pressure equation: P = rho g h

h = P/(rho g)

h = (9605 kg/m/s^2) / (1000 kg/m^3) / (9.8 m/s^2)

h = 0.98 m

0.98m is the maximum depth he could have been.

8 0
2 years ago
Find your mass if a scale on earth reads 650 N when you stand on it.
netineya [11]

Weight = (mass) x (gravity)

Acceleration of gravity on Earth = 9.8 m/s²

                                           Weight on Earth = (mass) x (9.8 m/s²)

Divide each side by  (9.8 m/s²):          Mass = (weight) / (9.8 m/s²)

                                                            Mass = (650 N) / (9.8 m/s²)

                                                           Mass = 66.33 kg  (rounded)
 
7 0
2 years ago
Other questions:
  • Janelle wants to buy some strings of decorative lights for her home. She is trying to decide between two strings of lights that
    11·2 answers
  • Estimate the number of gallons of gasoline consumed by the total of all automobile drivers in the U.S., per year. Suppose that t
    8·2 answers
  • Estimate the monthly cost of using a 700-W refrigerator that runs for 10 h a day if the cost per kWh is $0.20.
    12·1 answer
  • A bee wants to fly to a flower located due North of the hive on a windy day. The wind blows from East to West at speed 6.68 m/s.
    8·1 answer
  • According to Newton's Law of Universal Gravitation, which of the following would cause the attractive force between a planet and
    8·1 answer
  • What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade?
    14·1 answer
  • What conclusion can be derived by comparing the central tendencies of the two data sets?
    6·1 answer
  • in a race, Usain Bolt accelerates at 1.99m/s^2 for the first 60.0m, then decelerates at -0.266m/s^2 for the final 40.0m. what wa
    13·1 answer
  • A stationary boat in the ocean is experiencing waves from a storm. The waves move at 59 km/h and have a wavelength of 145 m . Th
    15·1 answer
  • The Problems: 1. Xavier starts at a position of 0 m and moves with an average speed of 0.50 m/s for 3.0 seconds. He normally mov
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!