answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
13

A certain gas is present in a 12.0 L cylinder at 4.0 atm pressure. If the pressure is increased to 8.0 atm the volume of the gas

decreases to 6.0 L . Find the two constants ki, the initial value of k, and kf, the final value of k, to verify whether the gas obeys Boyle’s law by entering the numerical values for ki and kf in the space provided.
Chemistry
2 answers:
diamong [38]3 years ago
4 0
There are 3 parts in this question:
1) To find the initial Boyle's constant k_{i}
2) To find the final Boyle's constant k_{f}
3) To verify whether gas is obeying Boyle's law or not

Given data:
The initial volume of the cylinder(in litres) = V_{i} = 12.0 L
The initial pressure(in atmospheric pressure) = P_{i} = 4.0 atm

The final pressure(in atmospheric pressure) = P_{f} = 8.0 atm
The final volume of the cylinder(in litres) = V_{f} = 6.0 L

First you need to know what Boyle's law is:
<span>Boyle's law states that the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature.
</span>
The Mathematical form of Boyle's law is:
P =  \frac{k}{V}

Where,
P = Pressure
V = Volume of the gas
k = Boyle's constant

Now let's solve aforementioned parts one by one:
1. 
The initial volume of the cylinder(in litres) = V_{i} = 12.0 L
The initial pressure(in atmospheric pressure) = P_{i} = 4.0 atm
The Boyle's constant = k_{i} = ?

According to the Boyle's law,

P_{i} = \frac{k_{i}}{V_{i}}

=> k_{i} =  P_{i}V_{i}
Plug-in the values in the above equation, you would get:
k_{i} = 4.0 * 12.0 = 48

Ans-1) k_{i} = 48

2.
The final pressure(in atmospheric pressure) = P_{f} = 8.0 atm
The final volume of the cylinder(in litres) = V_{f} = 6.0 L
The Boyle's constant = k_{f} = ?

According to the Boyle's law,

P_{f} = \frac{k_{f}}{V_{f}}

=> k_{f} =  P_{f}V_{f}
Plug-in the values in the above equation, you would get:
k_{f} = 8.0 * 6.0 = 48

Ans-2) k_{f} = 48

3.
In order to verify Boyle's law, the initial Boyle's constant should be EQUAL to the final Boyle's constant, meaning:

k_{i} = k_{f}

Since,
k_{i} = 48
k_{f} = 48

Therefore,
48=48.

Ans-3) Hence proved: The gas IS obeying the Boyle's law.

-i

Reil [10]3 years ago
4 0

The initial value of constant {{\text{k}}_1} is 48.0 atmL and the final value of constant {{\text{k}}_2}  is 48.0 atmL. This proves that Boyle's lawis obeyed by gas.

Further explanation:

Boyle’s law:

It is an experimental gas law that describes the relationship between pressure and volume of the gas. According to Boyle's law, the volume of the gas is inversely proportional to the pressure of the system, provided that the temperature and the number of moles of gas remain constant.

If the temperature and number of moles of gas are constant then the equation (1) will become as follows:

{\text{PV}} = {\text{k}}                 ……(2)

Here, k is a constant.

Or it can also be expressed as follows:

{{\text{P}}_1}{{\text{V}}_1} = {{\text{P}}_2}{{\text{V}}_2}    ……(3)

Here,

{{\text{P}}_1} is the initial pressure.

{{\text{P}}_2} is the final pressure.

{{\text{V}}_1} is the initial volume.

{{\text{V}}_2} is the final volume.

Boyle'slaw for the initial condition of gas can be written as,

{{\text{P}}_1}{{\text{V}}_1}={{\text{k}}_1}                                   …… (4)

Substitute 4.0 atm for {{\text{P}}_1}  and 12.0 L for {{\text{V}}_1}  in equation (4).

\begin{aligned}\left( {4.0{\text{ atm}}}\right)\left({12.0{\text{ L}}}\right)&= {{\text{k}}_1}\hfill\\48.0{\text{ atm}}\cdot{\text{L}}&= {{\text{k}}_1}\hfill\\\end{aligned}

Boyle's law for the final condition of gas can be written as,

{{\text{P}}_2}{{\text{V}}_2} = {{\text{k}}_2}                                   …… (5)

Substitute 8.0 atm for {{\text{P}}_2}  and 6.0 L for {{\text{V}}_2}  in equation (5).

\begin{aligned}\left( {8.0{\text{ atm}}}\right)\left({6.0{\text{ L}}}\right)&={{\text{k}}_2}\hfill\\48.0{\text{ atm}}\cdot{\text{L}}&={{\text{k}}_2}\hfill\\ \end{aligned}

Since the value of {{\text{k}}_1} and {{\text{k}}_2}  is equal in both cases thus this gives,

 {{\text{P}}_1}{{\text{V}}_1} = {{\text{P}}_2}{{\text{V}}_2}

Hence, it is proved that Boyle's law is obeyed by the given gas.

Learn more:

1. Law of conservation of matter states: <u>brainly.com/question/2190120 </u>

2. <u>Calculation of volume of gas: brainly.com/question/3636135 </u>

<u> </u>

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Ideal gas of equation

Keywords: Boyle's law, volume, temperature, pressure, volume pressure relationship, constant temperature, relationship, V inversely proportional to P, ideal gas, ideal gas equation number of mole and moles.

You might be interested in
Suppose a group of volunteers is planning to build a park near a local lake. The lake is known to contain low levels of arsenic
Kisachek [45]

Answer:

A) 10.75 is the concentration of arsenic in the sample in parts per billion .

B) 7,633.66 kg the total mass of arsenic in the lake that the company have to remove.

C) It will take 1.37 years to remove all of the arsenic from the lake.

Explanation:

A) Mass of arsenic in lake water sample = 164.5 ng

The ppb is the amount of solute (in micrograms) present in kilogram of a solvent. It is also known as parts-per million.

To calculate the ppm of oxygen in sea water, we use the equation:

\text{ppb}=\frac{\text{Mass of solute}}{\text{Mass of solution}}\times 10^9

Both the masses are in grams.

We are given:

Mass of arsenic = 164.5 ng = 164.5\times 10^{-9} g

1 ng=10^{-9} g

Volume of the sample = V = 15.3 cm^3

Density of the lake water sample ,d= 1.00 g/cm^3

Mass of sample =  M = d\times V=1.0 g/cm^3\times 15.3 cm^3=15.3 g

ppb=\frac{164.5\times 10^{-9} g}{15.3 g}\times 10^9=10.75

10.75 is the concentration of arsenic in the sample in parts per billion.

B)

Mass of arsenic in 1 cm^3  of lake water = \frac{164.5\times 10^{-9} g}{15.3}=1.075\times 10^{-8} g

Mass of arsenic in 0.710 km^3 lake water be m.

1 km^3=10^{15} cm^3

Mass of arsenic in 0.710\times 10^{15} cm^3 lake water :

m=0.710\times 10^{15}\times 1.075\times 10^{-8} g=7,633,660.130 g

1 g = 0.001 kg

7,633,660.130 g = 7,633,660.130 × 0.001 kg=7,633.660130 kg ≈ 7,633.66 kg

7,633.66 kg the total mass of arsenic in the lake that the company have to remove.

C)

Company claims that it takes 2.74 days to remove 41.90 kilogram of arsenic from lake water.

Days required to remove 1 kilogram of arsenic from the lake water :

\frac{2.74}{41.90} days

Then days required to remove 7,633.66 kg of arsenic from the lake water :

=7,633.66\times \frac{2.74}{41.90} days=499.19 days

1 year = 365 days

499.19 days = \frac{499.19}{365} years = 1.367 years\approx 1.37 years

It will take 1.37 years to remove all of the arsenic from the lake.

3 0
2 years ago
Show that the Newton has the units of mass times acceleration
Dimas [21]

F = ma = (kg)(m/s2) = kg ´ m/s2 N

hope this helps :D

7 0
2 years ago
A student runs an experiment in the lab and then uses the data to prepare an Arrhenius plot of the natural log of the rate const
Thepotemich [5.8K]

Answer:

21.86582KJ

Explanation:

The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.

Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.

5 0
2 years ago
Exactly 1.0 mol N2O4 is placed in an empty 1.0-L container and allowed to reach equilibrium described by the equation N2O4(g) 2N
Amanda [17]

Answer : The correct option is, (a) 0.44

Explanation :

First we have to calculate the concentration of N_2O_4.

\text{Concentration of }N_2O_4=\frac{\text{Moles of }N_2O_4}{\text{Volume of solution}}

\text{Concentration of }N_2O_4=\frac{1.0moles}{1.0L}=1.0M

Now we have to calculate the dissociated concentration of N_2O_4.

The balanced equilibrium reaction is,

                             N_2O_4(g)\rightleftharpoons 2NO_2(aq)

Initial conc.           1.0 M          0

At eqm. conc.     (1.0-x) M    (2x) M

As we are given,

The percent of dissociation of N_2O_4 = \alpha = 28.0 %

So, the dissociate concentration of N_2O_4 = C\alpha=1.0M\times \frac{28.0}{100}=0.28M

The value of x = C\alpha = 0.28 M

Now we have to calculate the concentration of N_2O_4\text{ and }NO_2 at equilibrium.

Concentration of N_2O_4 = 1.0 - x  = 1.0 - 0.28 = 0.72 M

Concentration of NO_2 = 2x = 2 × 0.28 = 0.56 M

Now we have to calculate the equilibrium constant for the reaction.

The expression of equilibrium constant for the reaction will be:

K_c=\frac{[NO_2]^2}{[N_2O_4]}

Now put all the values in this expression, we get :

K_c=\frac{(0.56)^2}{0.72}=0.44

Therefore, the equilibrium constant K_c for the reaction is, 0.44

8 0
2 years ago
2 physical changes that happen in aquaponics
maks197457 [2]

Answer:

The physical and chemical change that occurs in the aquaponics are given below.

Explanation:

The plants and animals grow in size and decrease the mass of plant due to eating by the fishes is a physical changes which occurs in aquaponics. The sunlight has a heat energy which is absorb by the plants present in aquaponics which is a type of endothermic reaction. In aquaponics, the ammonia present in water is converted into nitrates which is used by the plants as a nutrients. When the mass is converted into energy, it increases the temperature of the ecosystem and also the earth surface. For example, if a wood is burn, it change into heat energy which increases the temperature and cause the global warming on the earth surface.

3 0
2 years ago
Other questions:
  • The ionization energy for a hydrogen atom is 1.31×106 J/mol. What is the ionization energy for He+?
    5·2 answers
  • Which reactants would lead to a spontaneous reaction?
    13·1 answer
  • The reaction below has an equilibrium constant kp=2.2×106 at 298 k. 2cof2(g)⇌co2(g)+cf4(g) calculate kp for the reaction below.
    15·2 answers
  • A "shielding gas" mixture of argon and carbon dioxide is sometimes used in welding to improve the strength of the weld. if a gas
    12·2 answers
  • Ms. Block's students are studying chemical reactions. A classic reaction occurs when a metal is added to hydrochloric acid. Migu
    11·2 answers
  • 1. Calculate the work, w, gained or lost by the system when a gas expands from 15 L to 50 L against a constant external pressure
    14·1 answer
  • What occurs when an optically active alcohol reacts with HBr to give an alkyl halide? Multiple Choice the chirality center retai
    8·2 answers
  • Suppose 1.65 moles of C₆H₆ react with excess oxygen to produce carbon dioxide and water.
    6·2 answers
  • More active metals will cause the reduction of less active metals. Less active metals will cause no reaction (N.R.) in more acti
    8·1 answer
  • This unit discusses in detail the role of catalysts to lower the activation energy of reactions. The term catalyst appears in no
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!