Answer: Part 1: Propellant Fraction (MR) = 8.76
Part 2: Propellant Fraction (MR) = 1.63
Explanation: The Ideal Rocket Equation is given by:
Δv = 
Where:
is relationship between exhaust velocity and specific impulse
is the porpellant fraction, also written as MR.
The relationship
is: 
To determine the fraction:
Δv = 

Knowing that change in velocity is Δv = 9.6km/s and
= 9.81m/s²
<u>Note:</u> Velocity and gravity have different measures, so to cancel them out, transform km in m by multiplying velocity by 10³.
<u />
<u>Part 1</u>: Isp = 450s

ln(MR) = 
ln (MR) = 2.17
MR = 
MR = 8.76
<u>Part 2:</u> Isp = 2000s

ln (MR) = 
ln (MR) = 0.49
MR = 
MR = 1.63
Answer:
a) v = 1.19 m / s
, b) P₁ = 0.922 10⁵ Pa
Explanation:
1) Let's use the fluid continuity equation
Q = A v
The area of a circle is
A = π r2 = π d²/4
v = Q / A = Q 4 / pi d²
v = 0.006 4/π 0.08²
v = 1.19 m / s
2) write Bernoulli's equation, where point 1 is the bladder and point 2 is the urine exit point
P₁ + ½ rho v₁² + rho g y₁ = P₂ + ½ rho v₂² + rho g y₂
The exercise tell us
P₂ = 1.0013 105 Pa
v₁ = 0
y₁ = 1 m
y₂=0
Rho (water) = 1000 kg / m³
P₁ + rho y₁ = P₂ + ½ rho v₂²
P₁ = P₂ + ½ rho v₂² - rho g y₁
P₁ = 1.013 10⁵ + ½ 1000 (1.19)² - 1000 9.8 1
P₁ = 1.013 10⁵ +708.5 - 9800
P₁ = 92208.5Pa
P₁ = 0.922 10⁵ Pa
Answer:
Speed of comet before collision is

Explanation:
Correction: (As stated after collision comet moves away from moon so velocity of moon and moon and comet must be opposite in direction. as spped of moon after collision is −4.40 × 10^2km/h so that comet's must be 5.740 × 10^3km/h instead of -5.740 × 10^3km/h)
Solution:

Case is considered as partially inelastic collision, by conservation of momentum
