<h2>Apartment Explosion Reported </h2>
The apartment’s explosion, reportedly caused by a gas leak, produced a violent release of gas and heat. The heat increased the temperature of the air in the room, which means an increase in the air's molecular kinetic energy.
When heat is provided then temperature increases and the molecules of substances move rapidly by increase of kinetic energy (K.E) temperature increases. It is understood that heat increases temperature.
Answer:
1.0125 x 10^19
Explanation:
current flowing through conductive wire= 9mA = 9 x 10^ -3 A
charge passing per 3 min
Q = It
= 9 x 10^ -3 x (3 x 60)
= 1.620 C
no of electrons in charge
Q = ne
1.620 = n x 1.6 x 10 ^ -19
n. = 1.0125 x 10 ^19
Answer:
Explanation:
graph would be a straight line from (0, 0) to (400, 8)
Plot points are
PE = mgh
50(0) = 0 J
50(2) = 100 J
50(4) = 200 J
50(6) = 300 J
50(8) = 400 J
Answer:
The ratio is
Explanation:
From the question we are told that
The radius of Phobos orbit is R_2 = 9380 km
The radius of Deimos orbit is 
Generally from Kepler's third law

Here M is the mass of Mars which is constant
G is the gravitational constant
So we see that 
=> ![[\frac{T_1}{T_2} ]^2 = [\frac{R_1}{R_2} ]^3](https://tex.z-dn.net/?f=%5B%5Cfrac%7BT_1%7D%7BT_2%7D%20%5D%5E2%20%3D%20%20%5B%5Cfrac%7BR_1%7D%7BR_2%7D%20%5D%5E3)
Here
is the period of Deimos
and
is the period of Phobos
So
![[\frac{T_1}{T_2} ] = [\frac{R_1}{R_2} ]^{\frac{3}{2}}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BT_1%7D%7BT_2%7D%20%5D%20%3D%20%20%5B%5Cfrac%7BR_1%7D%7BR_2%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D)
=> ![\frac{T_1}{T_2} = [\frac{23500 }{9380} ]^{\frac{3}{2}}]](https://tex.z-dn.net/?f=%5Cfrac%7BT_1%7D%7BT_2%7D%20%20%3D%20%20%5B%5Cfrac%7B23500%20%7D%7B9380%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%5D)
=>
Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15