Answer:
The answer is 0.046 mol.
Explanation:
By looking at the balanced equation, you can form a ratio of lithium chloride and lithium bromide using the coefficient value :
ratio of lithium bromide <u>(</u>2LiBr)
= 2
ratio of lithium chloride (2LiCl)
= 2
So the ratio is 2 : 2 then simplify into 1 : 1 . Which means that 1 mol of lithium bromide is equal to 1 mole of lithium chloride.
In this case, 0.046 mol of lithium bromide will form <u>0</u><u>.</u><u>0</u><u>4</u><u>6</u><u> </u><u>m</u><u>o</u><u>l</u> of lithium chloride.
The way how <span>data is not actually obtained from the experiment represented in a line graph is defnitely that </span><span>a colored line with a broken line. It is a well known fact that to obtain the actual data from the experiment you there should be plotted points on the line. Hope it will help you! Regards.</span>
Answer:
H₃PO₄/H₂PO₄⁻ and HCO₃⁻/CO₃²⁻
Explanation:
An acid is a proton donor; a base is a proton acceptor.
Thus, H₃PO₄ is the acid, because it donates a proton to the carbonate ion.
CO₃²⁻ is the base, because it accepts a proton from the phosphoric acid.
The conjugate base is what's left after the acid has given up its proton.
The conjugate acid is what's formed when the base has accepted a proton.
H₃PO₄/H₂PO₄⁻ make one conjugate acid/base pair, and HCO₃⁻/CO₃²⁻ are the other conjugate acid/base pair.
H₃PO₄ + CO₃²⁻ ⇌ H₂PO₄⁻ + HCO₃⁻
acid base conj. conj.
base acid
Answer : The molarity of solution is, 1.00 M
Explanation : Given,
Moles of
= 0.500 mol
Volume of solution = 0.500 L
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:

Therefore, the molarity of solution is, 1.00 M
Answer:
92.65256 cm^3
Explanation:
To find this, we can simply multiply all three dimensions to get the answer in cubic centimeters, and we get the answer above. If you want to be more specific, we can go by the sigfig rule and the answer would be rounded to 93 cm^3.