Answer : The correct option is, the negative log of the hydroxide ion concentration.
Explanation :
pOH : It is defined as the negative logarithm of hydroxide ion concentration. It is a measure of the alkalinity of the solution.
Formula used :
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
is the concentration of
ions.
When pOH is less than 7, the solution is alkaline.
When pOH is more than 7, the solution is acidic.
When pOH is equal to 7, the solution is neutral.
Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
![q=\frac{[\text {glucose 6-phosphate}][ADP]}{[Glucose][ATP]}](https://tex.z-dn.net/?f=q%3D%5Cfrac%7B%5B%5Ctext%20%7Bglucose%206-phosphate%7D%5D%5BADP%5D%7D%7B%5BGlucose%5D%5BATP%5D%7D)

so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq
Answer:
We have to take 37.5 mL of a 0.400 M solution
Explanation:
Step 1: Data given
Stock volume = 100 mL = 0.100L
Stock concentration 0.400 M
Volume of solution he wants to make = 100 mL = 0.100L
Concentration of solution he wants to make = 0.150 M
Step 2: Calculate the volume of 0.400 M CuSO4 needed
C1*V1 = C2*V2
⇒with C1 = the stock concentration = 0.400M
⇒with V1 = the volume of the stock = TO BE DETERMINED
⇒with C2 = the concentration of the solution he wants to make = 0.150 M
⇒with V2 = the volume of the solution made = 0.100 L
0.400 M * V1 = 0.150M * 0.100L
V1 = (0.150M*0.100L) / 0.400 M
V1 = 0.0375 L = 37.5 mL
We have to take 37.5 mL of a 0.400 M solution
Answer: 1.Stars are born in clouds of gas and dust called nebulas.
2.The gas and dust are pulled together by gravity.
3.Heat and pressure cause nuclear fusion, which signals the birth of a star.
Explanation:
The question provides the data in an incorrect way, but what the question is asking is for the entropy change when combining 3 moles of water at 0 °C (273.15 K) with 1 mole of water at 100 °C (373.15 K). We are told the molar heat capacity is 75.3 J/Kmol. We will be using the following formula to calculate the entropy change of each portion of water:
ΔS = nCln(T₂/T₁)
n = number of moles
C = molar heat capacity
T₂ = final temperature
T₁ = initial temperature
We can first find the equilibrium temperature of the mixture which will be the value of T₂ in each case:
[(3 moles)(273.15 K) + (1 mole)(373.15 K)]/(4 moles) = 298.15 K
Now we can find the change in entropy for the 3 moles of water heating up to 298.15 K and the 1 mole of water cooling down to 298.15 K:
ΔS = (3 moles)(75.3 J/Kmol)ln(298.15/273.15)
ΔS = 19.8 J/K
ΔS = (1 mole)(75.3 J/Kmol)ln(298.15/373.15)
ΔS = -16.9 J/K
Now we combine the entropy change of each portion of water to get the total entropy change for the system:
ΔS = 19.8 J/K + (-16.9 J/K)
ΔS = 2.9 J/K
The entropy change for combining the two temperatures of water is 2.9 J/K.