When the amount of heat gained = the amount of heat loss
so, M*C*ΔTloses = M*C* ΔT gained
when here the water is gained heat as the Ti = 25°C and Tf= 28°C so it gains more heat.
∴( M * C * ΔT )W = (M*C*ΔT) Al
when Mw is the mass of water = 100 g
and C the specific heat capacity of water = 4.18
and ΔT the change in temperature for water= 28-25 = 3 ° C
and ΔT the change in temperature for Al = 100-28= 72°C
and M Al is the mass of Al block
C is the specific heat capacity of the block = 0.9
so by substitution:
100 g * 4.18*3 = M Al * 0.9*72
∴ the mass of Al block is = 100 g *4.18 / 0.9*72
= 19.35 g
First, let's write down the balanced chemical reaction between the given reactants:
NO₂ + NO → N₂O + O₂
The Lewis structure of the main product is shown in the attached picture. To determine the formal charge of each element, the formula is as follows:
Formal Charge = Valence electrons - Non-bonding valence electrons - (Bonding electrons/2)
For the leftmost N:
Formal charge = 5 - 2 - 6/2 = 0
For the middle N:
Formal charge = 5 - 0 - 8/2 = 1
For O:
Formal charge = 6 - 6 - 2/2 = -1
First calculate the moles of N2 and H2 reacted.
moles N2 = 27.7 g / (28 g/mol) = 0.9893 mol
moles H2 = 4.45 g / (2 g/mol) = 2.225 mol
We can see that N2 is the limiting reactant, therefore we
base our calculation from that.
Calculating for mass of N2H4 formed:
mass N2H4 = 0.9893 mol N2 * (1 mole N2H4 / 1 mole N2) * 32
g / mol * 0.775
<span>mass N2H4 = 24.53 grams</span>
Answer:
8.9 KJ
Explanation:
Given data:
Mass of strip = 251 g
Initial temperature = 22.8 °C
Final temperature = 75.9 °C
Specific heat capacity of granite = 0.67 j/g.°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 75.9 °C - 22.8 °C
ΔT = 53.1 °C
Q = 251 g × 0.67 j/g.°C × 53.1 °C
Q = 8929.8 J
Jolue to KJ.
8929.8J ×1 KJ / 1000 J
8.9 KJ
Answer:
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Explanation:
Chemical equation:
HNO₃ + NaOH → NaNO₃ + H₂O
Balanced chemical equation:
HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(l)
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Net ionic equation:
H⁺(aq) + OH⁻(aq) → H₂O(l)
The NO₃⁻ (aq) and Na⁺ (aq) are spectator ions that's why these are not written in net ionic equation. The water can not be splitted into ions because it is present in liquid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation