Answer:
The mass percentage of bromine in the original compound is 81,12%
Explanation:
<u>Step 1: Calculate moles AgBr</u>
moles AgBr = mass AgBr / molar mass AgBr
= 0.8878 g / 187.77 g/mol
= 0.00472812 moles AgBr
⇒
Since 1 mol AgBr contains 1 mol Br-
Then the amount of moles Br- in the original sample must also have been 0.00472812 moles
<u>Step 2:</u> Calculating mass Br-
mass Br- = molar mass Br x moles Br-
= 79.904 g/mol x 0.00472812 mol
= 0.377796 g Br-
⇒
There were 0.377796 g Br- in the original sample
<u>Step 3:</u> Calculating mass percentage Br-
⇒mass percentage = actual mass Br- / total mass x 100%
% mass Br = 0.377796 g / 0.4657 g x 100 %
= 81.12%
Answer: The actual yield of
is 60.0 g
Explanation:-
The balanced chemical reaction :

Mass of
=

According to stoichiometry:
1 mole of
gives = 1 mole of 
1.51 moles of
gives =
moles of 
Theoretical yield of 
Percent yield of
= 



Thus the actual yield of
is 60.0 g
<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
We are given:
A weak acid that is hypochlorous acid (HClO) and basic salt that is sodium hypochlorite (NaClO)
When a strong base is added to the buffer, the hydroxide ion will be neutralized by hydrogen ions from the acid.
So, the buffer component that neutralizes the additional hydroxide ions in the solution is HClO
The chemical equation for the neutralization of hydroxide ion with acid follows:

Hence, the balanced chemical equation is written below.
2, 4, 1
Explanation:
We have the following chemical reaction:
Ag₂O → Ag + O₂
To balance the chemical equation the number of atoms of each element entering the reaction have to be equal to the number of atoms of each element leaving the reaction, in order to conserve the mass.
So the balanced chemical equation is:
2 Ag₂O → 4 Ag + O₂
Learn more about:
balancing chemical equations
brainly.com/question/14112113
brainly.com/question/14187530
#learnwithBrainly
Answer:
D = 28.2g
Explanation:
Initial temperature of metal (T1) = 155°C
Initial Temperature of calorimeter (T2) = 18.7°C
Final temperature of solution (T3) = 26.4°C
Specific heat capacity of water (C2) = 4.184J/g°C
Specific heat capacity of metal (C1) = 0.444J/g°C
Volume of water = 50.0mL
Assuming no heat loss
Heat energy lost by metal = heat energy gain by water + calorimeter
Heat energy (Q) = MC∇T
M = mass
C = specific heat capacity
∇T = change in temperature
Mass of metal = M1
Mass of water = M2
Density = mass / volume
Mass = density * volume
Density of water = 1g/mL
Mass(M2) = 1 * 50
Mass = 50g
Heat loss by the metal = heat gain by water + calorimeter
M1C1(T1 - T3) = M2C2(T3 - T2)
M1 * 0.444 * (155 - 26.4) = 50 * 4.184 * (26.4 - 18.7)
0.444M1 * 128.6 = 209.2 * 7.7
57.0984M1 = 1610.84
M1 = 1610.84 / 57.0984
M1 = 28.21g
The mass of the metal is 28.21g