answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
2 years ago
11

A circuit is made of 0.4 ohm wire, 150 ohm bulb and a 120ohm rheo stat connected inseries. Determine the total resistance of the

resistance of the circuit?
Physics
1 answer:
UNO [17]2 years ago
8 0
Answer:
Total resistance of the circuit is 270.4 ohm

Explanation:
We are given that:
resistance of wire = 0.4 ohm
resistance of bulb = 150 ohm
resistance of rheostat = 120 ohm

We are also given that these components are connected in series. This means that the total resistance is summation of all the series components.

Therefore
Total resistance = 0.4 + 150 + 120 = 270.4 ohm

Hope this helps :)
You might be interested in
Calculate the change in the kinetic energy (KE) of the bottle when the mass is increased. Use the formula KE = mv2, where m is t
Aliun [14]

kinetic energy is given as

KE = (0.5) m v²

given that : v = speed of the bottle in each case =  4 m/s

when m = 0.125 kg

KE = (0.5) m v² =  (0.5) (0.125) (4)² = 1 J

when m = 0.250 kg

KE = (0.5) m v² =  (0.5) (0.250) (4)² = 2 J

when m = 0.375 kg

KE = (0.5) m v² =  (0.5) (0.375) (4)² = 3 J

when m = 0.0.500 kg

KE = (0.5) m v² =  (0.5) (0.500) (4)² = 4 J

6 0
1 year ago
Read 3 more answers
A physician orders Humulin R 44 units and Humulin N 40 units qam and Humulin R 35 units ac evening meal subcutaneously. How many
jekas [21]

The question is incomplete, the concentration of qam and humulin is not given unless R is used concentration

Complete question:

A physician orders Humulin 50/50 44 units and Humulin N 40 units qam and Humulin R 35 units ac evening meal subcutaneously. How many total units of insulin are administered each morning?

Answer:

the total units of insulin admistered each morning

= 22 units of qam and humulin

Explanation:

given

44 units and Humnlin N

with concentration 50/100 = 1/2 = 0.5

∴ 44 × 0.5 ≈ 22 units in the morning

regular insulin administered each day

(22 + 35)units of qam and humulin

= 57units

5 0
2 years ago
When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
MA_775_DIABLO [31]

Answer:

If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

Explanation:

R₁ = Resistance of first resistor

R₂ = Resistance of second resistor

V = Voltage of battery = 12 V

I = Current = 0.33 A (series)

I = Current = 1.6 A (parallel)

In series

\text{Equivalent resistance}=R_{eq}=R_1+R_2\\\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{0.33}\\\Rightarrow R_1+R_2=36.36\\ Also\ R_1=36.36-R_2

In parallel

\text{Equivalent resistance}=\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}\\\Rightarrow {R_{eq}=\frac{R_1R_2}{R_1+R_2}

\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{1.6}\\\Rightarrow \frac{R_1R_2}{R_1+R_2}=7.5\\\Rightarrow \frac{R_1R_2}{36.36}=7.5\\\Rightarrow R_1R_2=272.72\\\Rightarrow(36.36-R_2)R_2=272.72\\\Rightarrow R_2^2-36.36R_2+272.72=0

Solving the above quadratic equation

\Rightarrow R_2=\frac{36.36\pm \sqrt{36.36^2-4\times 272.72}}{2}

\Rightarrow R_2=25.78\ or\ 10.57\\ If\ R_2=25.78\ then\ R_1=36.36-25.78=10.58\ \Omega\\ If\ R_2=10.57\ then\ R_1=36.36-10.57=25.79\Omega

∴ If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

6 0
2 years ago
A 70 kg student jumps down to form a 1 m high platform. She forgets to bend her knees and her downward motion stops in 0.02 seco
34kurt

Answer:

15,505 N

Explanation:

Using the principle of conservation of energy, the potential energy loss of the student equals the kinetic energy gain of the student

-ΔU = ΔK

-(U₂ - U₁) = K₂ - K₁ where U₁ = initial potential energy = mgh , U₂ = final potential energy = 0, K₁ = initial kinetic energy = 0 and K₂ = final kinetic energy = 1/2mv²

-(0 - mgh) = 1/2mv² - 0

mgh = 1/2mv² where m = mass of student = 70kg, h = height of platform  = 1 m, g = acceleration due to gravity = 9.8 m/s² and v = final velocity of student as he hits the ground.

mgh = 1/2mv²

gh = 1/2v²

v² = 2gh

v = √(2gh)

v = √(2 × 9.8 m/s² × 1 m)

v = √(19.6 m²/s²)

v = 4.43 m/s

Upon impact on the ground and stopping, impulse I = Ft = m(v' - v) where F = force, t = time = 0.02 s, m =mass of student = 70 kg, v = initial velocity on impact = 4.43 m/s and v'= final velocity at stopping = 0 m/s

So Ft = m(v' - v)

F = m(v' - v)/t

substituting the values of the variables, we have

F = 70 kg(0 m/s - 4.43 m/s)/0.02 s

= 70 kg(- 4.43 m/s)/0.02 s

= -310.1 kgm/s ÷ 0.02 s

= -15,505 N

So, the force transmitted to her bones is 15,505 N

3 0
2 years ago
Now that we have a feel for the state of the circuit in its steady state, let us obtain the expression for the current in the ci
vesna_86 [32]

Answer:

i(t) = (E/R)[1 - exp(-Rt/L)]

Explanation:

E−vR−vL=0

E− iR− Ldi/dt = 0

E− iR = Ldi/dt

Separating te variables,

dt/L = di/(E - iR)

Let x = E - iR, so dx = -Rdi and di = -dx/R substituting for x and di we have

dt/L = -dx/Rx

-Rdt/L = dx/x

interating both sides, we have

∫-Rdt/L = ∫dx/x

-Rt/L + C = ㏑x

x = exp(-Rt/L + C)

x = exp(-Rt/L)exp(C)     A = exp(C) we have

x = Aexp(-Rt/L) Substituting x = E - iR we have

E - iR = Aexp(-Rt/L) when t = 0, i(0) = 0. So

E - i(0)R = Aexp(-R×0/L)

E - 0 = Aexp(0) = A × 1

E = A

So,

E - i(t)R = Eexp(-Rt/L)

i(t)R = E - Eexp(-Rt/L)

i(t)R = E(1 - exp(-Rt/L))

i(t) = (E/R)(1 - exp(-Rt/L))

5 0
2 years ago
Other questions:
  • a student moves a box across the floor by exerting 23.3 N of force and doing 47.2 J of work on the box. How far does the student
    9·1 answer
  • Vector A⃗ has a magnitude of 3.00 and is directed parallel to the negative y-axis and vector B⃗ has a magnitude of 3.00 and is d
    6·2 answers
  • Platinum has a density of 21.4 g/cm3. if thieves were to steal platinum from a bank using a small truck with a maximum payload o
    12·1 answer
  • An actor who memorizes his lines word-for-word has demonstrated _____ learning.
    15·2 answers
  • An electron is orbiting a nucleus which has a charge of 19e, under the action of the coulomb force at a radius of 1.15 × 10-10 m
    14·2 answers
  • In a thunderstorm, the air must be ionized by a high voltage before a conducting path for a lightning bolt can be created. an el
    11·1 answer
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar. In a survey conduc
    14·1 answer
  • When a 100-Ω resistor is connected across the terminals of a battery of emf ε and internal resistance r, the battery delivers 0.
    9·1 answer
  • A cart starts from rest and accelerates at 4.0 m/s2 for 5.0 s, then maintains that velocity for 10 s, and then decelerates at th
    8·1 answer
  • You've always wondered about the acceleration of the elevators in the 101 story-tall Empire State Building. One day, while visit
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!