Answer:
When the operation of the voltaic cell, which is formed of an aluminum and silver strip takes place, the atom of aluminum loses three of its electrons and the Al3+ formed moves within the solution. The Al3+ ion gets dissolved within the solution and the electrons lost in the process moves through the wire and get acquired by the ions of silver, which then get reduced to solid Ag resulting in the mass gain of silver strip.
Answer:
The maximum wavelength of light for which a carbon-carbon triple bond could be broken by absorbing a single photon is 143 nm.
Explanation:
It takes 839 kJ/mol to break a carbon-carbon triple bond.
Energy required to break 1 mole of carbon-carbon triple bond = E = 839 kJ
E = 839 kJ/mol = 839,000 J/mol
Energy required to break 1 carbon-carbon triple bond = E'

The energy require to single carbon-carbon triple bond will corresponds to wavelength which is required to break the bond.
(Using planks equation)


The maximum wavelength of light for which a carbon-carbon triple bond could be broken by absorbing a single photon is 143 nm.
Answer: C. 25.6 kPa
Explanation:
The Gauge pressure is defined as the amount of pressure in a fluid that exceeds the amount of pressure in the atmosphere.
As such, the formula will be,
PG = PT – PA
Where,
PG is Gauge Pressure
PT is Absolute Pressure
PA is Atmospheric Pressure
Inputted in the formula,
PG = 125.4 - 99.8
PG = 25.6 kPa
The gauge pressure inside the container is 25.6kPa which is option C.